【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)請判斷AB與CD的位置關(guān)系并說明理由;
(2)如圖2,當(dāng)∠E=90°且AB與CD的位置關(guān)系保持不變,移動直角頂點(diǎn)E,使∠MCE=∠ECD,當(dāng)直角頂點(diǎn)E點(diǎn)移動時,問∠BAE與∠MCD否存在確定的數(shù)量關(guān)系?并說明理由;
(3)如圖3,P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動點(diǎn)且AB與CD的位置關(guān)系保持不變,當(dāng)點(diǎn)Q在射線CD上運(yùn)動時(點(diǎn)C除外)∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系?猜想結(jié)論并說明理由.

【答案】解:(1)∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD;
(2)∠BAE+∠MCD=90°;
過E作EF∥AB,
∵AB∥CD,
∴EF∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠E=90°,
∴∠BAE+∠ECD=90°,
∵∠MCE=∠ECD,
∴∠BAE+∠MCD=90°;
(3)∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠QPC+∠PQC+∠PCQ=180°,
∴∠BAC=∠PQC+∠QPC.

【解析】(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出結(jié)論;
(2)過E作EF∥AB,根據(jù)平行線的性質(zhì)可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出結(jié)論;
(3)根據(jù)AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.
【考點(diǎn)精析】本題主要考查了平行線的性質(zhì)的相關(guān)知識點(diǎn),需要掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補(bǔ)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)(﹣36 )÷9
(2)(﹣ )×(﹣3 )÷(﹣1 )÷3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知小名比小麗大3歲,一天小名對小麗說再過十五年,咱倆年齡和的2倍就是110歲了那么現(xiàn)在小名年齡是_____歲.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一商場內(nèi)的一座自動扶梯所在的斜邊的坡度為i12.4,小明站在自動扶梯上,當(dāng)他沿著斜坡向上方向前進(jìn)了13米時,他在鉛垂方向升高了_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年,小欖鎮(zhèn)GDP總量約31600000000元,數(shù)據(jù)31600000000科學(xué)記數(shù)法表示為( 。

A.0.316×1010B.0.316×1011C.3.16×1010D.3.16×1011

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,真命題是( )

A.對角線互相垂直且相等的四邊形是正方形

B.等腰梯形既是軸對稱圖形又是中心對稱圖形

C.圓的切線垂直于經(jīng)過切點(diǎn)的半徑

D.垂直于同一直線的兩條直線互相垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家預(yù)測一種應(yīng)季襯衫能暢銷市場,就用13200元購進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求.商家又用28800元購進(jìn)了第二批這種襯衫,所購數(shù)量是第一批購進(jìn)量的2倍,但單價貴了10元.

(1)該商家購進(jìn)的第一批襯衫是多少件?

(2)若兩批襯衫按相同的標(biāo)價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤率不低于25%(不考慮其它因素),那么每件襯衫的標(biāo)價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB∥DE,∠B=60°,AE⊥BC,垂足為點(diǎn)E.

(1)求∠AED的度數(shù);
(2)當(dāng)∠EDC滿足什么條件時,AE∥DC,證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一副三角尺的直角頂點(diǎn)疊放在點(diǎn)C處,∠D=30°,∠B=45°,求:
(1)若∠DCE=35°,求∠ACB的度數(shù).
(2)若∠ACB=120°,求∠DCE的度數(shù).
(3)猜想∠ACB和∠DCE的關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案