【題目】如圖,點O為等邊三角形ABC內(nèi)一點,連接OA,OB,OC,將線段BO繞點B順時針旋轉60°到BM,連接CM,OM.
(1)求證:AO=CM;
(2)若OA=8,OC=6,OB=10,判斷△OMC的形狀并證明.
【答案】(1)見解析 (2)直角三角形,證明見解析
【解析】
(1)根據(jù)“BO繞點B順時針旋轉60°到BM”可知∠OBM=60°,OB=OM,即可證明△AOB≌△CMB,從而得到答案;
(2)由(1)可知AO=CM,根據(jù)OB=BM,∠OBM=60°,可知△OBM為等邊三角形,從而得到OB=OM,根據(jù)勾股定理的逆定理即可得到答案.
(1)證明:∵BO繞點B順時針旋轉60°到BM
∴∠OBM=60°,OB=BM,
∵△ABC為等邊三角形
∴∠ABC=60°,AB=CB
∴∠ABO+∠OBC=∠CBM+∠OBC=60°
∴∠ABO=∠CBM,
在△AOB和△CMB中,
∴△AOB≌△CMB(SAS),
∴AO=CM.
(2)△OMC是直角三角形;理由如下:
∵BO繞點B順時針旋轉60°到BM
∴∠OBM=60°,OB=BM,
∴△OBM為等邊三角形
∴OB=OM=10
由(1)可知OA=CM=8
在△OMC中,OM2=100,OC2+CM2=62+82=100,
∴OM2=OC2+CM2,
∴△OMC是直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD的對角線AC將其分割成兩個三角形:
(1)如圖1.若∠BAC=∠DAC,AB>AD,求證:AB-AD>CB-CD.
(2)如圖2.若∠ACD+∠BAC=180°,∠B=∠D,求證:BC=AD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將坐標原點O沿x軸向左平移2個單位長度得到點A,過點A作y軸的平行線交反比例函數(shù)y=的圖象于點B,AB=.
(1)求反比例函數(shù)的解析式;
(2)若P(x1,y1)、Q(x2,y2)是該反比例函數(shù)圖象上的兩點,且x1<x2時,y1>y2,指出點P、Q各位于哪個象限?并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線MN∥PQ,直線AB分別與MN,PQ相交于點A,B.小宇同學利用尺規(guī)按以下步驟作圖:①以點A為圓心,以任意長為半徑作弧交AN于點C,交AB于點D;②分別以C,D為圓心,以大于CD長為半徑作弧,兩弧在∠NAB內(nèi)交于點E;③作射線AE交PQ于點F.若AB=2,∠ABP=60°,則線段AF的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠B=∠C=36°,AD、AE三等分∠A,D、E在BC邊上,則其中的相似三角形(不包含全等)有( )
A.1對B.2對C.3對D.4對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD、BC是⊙O的兩條互相垂直的直徑,點P從點O出發(fā),沿O→C→D→O的路線勻速運動,設∠APB=y(單位:度),那么y與點P運動的時間x(單位:秒)的關系圖是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在和中,與交于點E,現(xiàn)有三個條件:①;②,③,請你從三個條件中選出兩個作為條件,另一個作為結論,組成一個真命題,并給予證明.
(1)條件是 ______ ;結論是 ______ (填序號);
(2)證明:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com