【題目】某校為打造書香校園,計劃購進甲乙兩種規(guī)格的書柜放置新購置的圖書,調(diào)查發(fā)現(xiàn),若購買甲種書柜3個,乙種書柜2個,共需要資金1020元;若購買甲種書柜4個,乙種書柜3個,共需資金1440元.
(1)甲乙兩種書柜每個的價格分別是多少元?
(2)若該校計劃購進這兩種規(guī)格的書柜共20個(其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量的).設(shè)該校計劃購進甲種書柜m個,資金總額為W元.求W與m的函數(shù)關(guān)系式,并請你為該校設(shè)計資金最少的購買方案.
【答案】(1)甲種書柜單價為180元,乙種書柜的單價為240元;(2)W=-60m+4800當購買甲書柜12個,乙書柜8個時,資金最少.
【解析】
(1)設(shè)甲種書柜單價為x元,乙種書柜單價為y元,根據(jù)題意列出二元一次方程組,求解即可.
(2)設(shè)該校計劃購進甲種書柜m個,則購進乙種書柜(20-m)個,根據(jù)“所需費用=甲種書柜費用+乙種書柜費用”列出關(guān)系式,根據(jù)“乙種書柜的數(shù)量不少于甲種書柜的數(shù)量的”列出不等式,求出不等式的解集;再利用一次函數(shù)的增減性確定方案即可.
解:(1)設(shè)甲種書柜單價為x元,乙種書柜單價為y元,由題意得:
解得:
答:甲種書柜單價為180元,乙種書柜單價為240元.
(2)設(shè)該校計劃購進甲種書柜m個,則購進乙種書柜(20-m)個
由題意得:
∵,解得:
∵
∴W隨m的增大而減小
∵
∴當m=12時,W取最小值,最小值為(元)
∴當購買甲種書柜12個,乙種書柜8個時,資金最少.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年三班的小雨同學(xué)想了解本校九年級學(xué)生對哪門課程感興趣,隨機抽取了部分九年級學(xué)生進行調(diào)查(每名學(xué)生必只能選擇一門課程).將獲得的數(shù)據(jù)整理繪制如下兩幅不完整的統(tǒng)計圖.
據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)在這次調(diào)查中一共抽取了 名學(xué)生,m的值是 .
(2)請根據(jù)據(jù)以上信息直在答題卡上補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中,“數(shù)學(xué)”所對應(yīng)的圓心角度數(shù)是 度;
(4)若該校九年級共有1000名學(xué)生,根據(jù)抽樣調(diào)查的結(jié)果,請你估計該校九年級學(xué)生中有多少名學(xué)生對數(shù)學(xué)感興趣.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝國慶節(jié),某市中小學(xué)統(tǒng)一組織文藝匯演,甲、乙兩所學(xué)校共92人(其中甲校人數(shù)多于乙校人數(shù),且甲校人數(shù)不夠90人)準備統(tǒng)一購買服裝參加演出,下面是某服裝廠給出的演出服裝的價格表:
購買服裝的套數(shù) | 1套至45套 | 46套至90套 | 91套及以上 |
每套服裝的價格 | 60元 | 50元 | 40元 |
如果兩所學(xué)校分別單獨購買服裝,一共應(yīng)付5000元.
(1)甲、乙兩所學(xué)校各有多少學(xué)生準備參加演出?
(2)如果甲、乙兩所學(xué)校聯(lián)合起來購買服裝,那么比各自購買服裝共可以節(jié)省多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平整的地面上,用個棱長都為的小正方體堆成一個幾何體.
請在圖2中畫出從正面、左面和上面看到的這個幾何體的形狀圖;
如果現(xiàn)在你還有一些大小相同的小正方體,要求保持從上面和左面看到的形狀圖都不變,最多可以再添加 個小正方體;
圖1中個小正方體搭成的幾何體的表面積(包括與地面接觸的部分)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠第一車間有人,第二車間比第一車間人數(shù)的少30人,如果從第二車間調(diào)出10人到第一車間,那么:
(1)兩個車間共有______人?
(2)調(diào)動后,第一車間的人數(shù)為______人,第二車的人數(shù)為______人.
(3)求調(diào)動后,第一車間的人數(shù)比第二車的人數(shù)多幾人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為3的正方形,點E在邊AD所在的直線上,連接CE,以CE為邊,作正方形CEFG(點C、E、F、G按逆時針排列),連接BF.
(1)如圖1,當點E與點D重合時,BF的長為 ;
(2)如圖2,當點E在線段AD上時,若AE=1,求BF的長;(提示:過點F作BC的垂線,交BC的延長線于點M,交AD的延長線于點N.)
(3)當點E在直線AD上時,若AE=4,請直接寫出BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求證:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 了解“孝感市初中生每天課外閱讀書籍時間的情況”最適合的調(diào)查方式是全面調(diào)查
B. 甲乙兩人跳繩各10次,其成績的平均數(shù)相等,,則甲的成績比乙穩(wěn)定
C. 三張分別畫有菱形,等邊三角形,圓的卡片,從中隨機抽取一張,恰好抽到中心對稱圖形卡片的概率是
D. “任意畫一個三角形,其內(nèi)角和是”這一事件是不可能事件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com