精英家教網 > 初中數學 > 題目詳情

【題目】已知點(3,5)在直線y=ax+b(a,b為常數,且a≠0)上,則 的值為

【答案】﹣
【解析】解:∵點(3,5)在直線y=ax+b上,
∴5=3a+b,
∴b﹣5=﹣3a,
= =﹣
所以答案是:﹣
【考點精析】通過靈活運用一次函數的性質和一次函數的圖象和性質,掌握一般地,一次函數y=kx+b有下列性質:(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減;一次函數是直線,圖像經過仨象限;正比例函數更簡單,經過原點一直線;兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠即可以解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:關于x的一元二次方程x22m+3x+m2+3m+2=0

(1)已知x=2是方程的一個根,求m的值;

(2)以這個方程的兩個實數根作為△ABCAB、ACABAC)的邊長,當BC=時,△ABC是等腰三角形,求此時m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】設“▲”、“●”、“■”分別表示三種不同的物體,現用天平秤兩次,情況如圖所示,那么▲、●、■這三種物體按質量從大到小排列應為(
A.■、●、▲
B.▲、■、●
C.■、▲、●
D.●、▲、■

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是半圓O上的一點,AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于E,連接CE.
(1)判斷CD與⊙O的位置關系,并證明你的結論;
(2)若E是 的中點,⊙O的半徑為1,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數y=ax2+bx+c的圖象的頂點C的坐標為(0,﹣2),交x軸于A、B兩點,其中A(﹣1,0),直線l:x=m(m>1)與x軸交于D.

(1)求二次函數的解析式和B的坐標;
(2)在直線l上找點P(P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求點P的坐標(用含m的代數式表示);
(3)在(2)成立的條件下,在拋物線上是否存在第一象限內的點Q,使△BPQ是以P為直角頂點的等腰直角三角形?如果存在,請求出點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若關于t的不等式組 ,恰有三個整數解,則關于x的一次函數 的圖象與反比例函數 的圖象的公共點的個數為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某物體從P點運動到Q點所用時間為7秒,其運動速度v(米每秒)關于時間t(秒)的函數關系如圖所示.某學習小組經過探究發(fā)現:該物體前進3秒運動的路程在數值上等于矩形AODB的面積.由物理學知識還可知:該物體前t(3<t≤7)秒運動的路程在數值上等于矩形AODB的面積與梯形BDNM的面積之和. 根據以上信息,完成下列問題:

(1)當3<t≤7時,用含t的式子表示v;
(2)分別求該物體在0≤t≤3和3<t≤7時,運動的路程s(米)關于時間t(秒)的函數關系式;并求該物體從P點運動到Q總路程的 時所用的時間.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在“雙十二”期間,A,B兩個超市開展促銷活動,活動方式如下:

A超市:購物金額打9折后,若超過2000元再優(yōu)惠300元;

B超市:購物金額打8

某學校計劃購買某品牌的籃球做獎品,該品牌的籃球在A,B兩個超市的標價相同根據商場的活動方式:

(1)若一次性付款4200元購買這種籃球,則在B商場購買的數量比在A商場購買的數量多5請求出這種籃球的標價;

(2)學校計劃購買100個籃球,請你設計一個購買方案,使所需的費用最少.(直接寫出方案

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們知道:分式和分數有著很多的相似點.如類比分數的基本性質,我們得到了分式的基本性質;類比分數的運算法則,我們得到了分式的運算法則;等等.小學里,把分子比分母小的分數叫做真分數.類似地,我們把分子整式的次數小于分母整式的次數的分式稱為真分式;反之,稱為假分式.任何一個假分式都可以化成整式與真分式的和的形式,如: ;

(1)下列分式中,屬于真分式的是:________(填序號);

(2)將假分式化成整式與真分式的和的形式: ________________;

(3)將假分式化成整式與真分式的和的形式: __________________.

查看答案和解析>>

同步練習冊答案