【題目】如圖,⊙O 是△ABC 的外接圓,BC 是直徑,AC=2DH,過點(diǎn) D 作 DH 垂直BC 于點(diǎn) H,以下結(jié)論中:①BH=HD;②∠BAO=∠BOD;③;④連接 AO、BD,若 BC=8,sin∠HDO= ,則四邊形 ABDO 的面積為, 其中正確的結(jié)論是 ____(請?zhí)顚懶蛱枺?/span>
【答案】②③
【解析】
作 OE⊥AC 于 E.首先證明 Rt△DOH≌Rt△AOE≌Rt△COE,利用全等三角形的性質(zhì),解直角三角形等知識一一判斷即可.
作 OE⊥AC 于 E.
∵OE⊥AC,
∴AE=EC,
∵AC=2DH,
∴DH=AE=CE,
∵OD=OA=OC,
∴Rt△DOH≌Rt△AOE≌Rt△COE,
∴∠ODH=∠OAC,OH=OE,
∵BC 是直徑,
∴∠BAC=90°,
∴∠BAO+∠OAE=90°,∵∠BOD+∠ODH=90°,
∴∠BAO=∠BOD,故②正確,
假設(shè)①成立,則點(diǎn) H 與 O 重合,顯然不符合題意,故①錯誤;
∵AE=EC,BO=OC,
∴AB=2OE=2OH,
∴,故③正確,
∵BC=8,sin∠ODH= ,
∴OH=OE=1,
∴AE=EC=DH= ,
∴S△AOB=2S△AOE=2×××1=,
∵S△BOD= ×4× =2 ,
∴S 四邊形 ABDO=S△ABO+S△OBD=+2 =3.故④錯誤, 故答案為②③.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某電信公司提供了A,B兩種方案的移動通訊費(fèi)用y(元)與通話時間x(元)之間的關(guān)系,則下列結(jié)論中正確的有( 。
(1)若通話時間少于120分,則A方案比B方案便宜20元;
(2)若通話時間超過200分,則B方案比A方案便宜12元;
(3)若通訊費(fèi)用為60元,則B方案比A方案的通話時間多;
(4)若兩種方案通訊費(fèi)用相差10元,則通話時間是145分或185分.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=x,點(diǎn)A1的坐標(biāo)為(1,0),過點(diǎn)A1作x軸的垂線交直線于點(diǎn)B1,以原點(diǎn)O為圓心,OB1的長為半徑畫弧交x軸于點(diǎn)A2;再過點(diǎn)A2作x軸的垂線交直線于點(diǎn)B2,以原點(diǎn)O為圓心,OB2的長為半徑畫弧交x軸于點(diǎn)A3,…,按此做法進(jìn)行下去,求點(diǎn)B6的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為的正方形繞點(diǎn)B逆時針旋轉(zhuǎn)30°,那么圖中點(diǎn)M的坐標(biāo)為( 。
A.(,1)B.(1,)C.(,)D.(,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校八年級開展英語拼寫大賽,一班和二班根據(jù)初賽成績,各選出5名選手參加復(fù)賽,兩個班各選出的5名選手的復(fù)賽成績?nèi)鐖D所示:
(1)根據(jù)圖示填寫下表
班級 | 中位數(shù)(分) | 眾數(shù)(分) | 平均數(shù)(分) |
一班 | 85 | ||
二班 | 100 | 85 |
(2)結(jié)合兩班復(fù)賽成績的平均數(shù)和中位數(shù),分析哪個班級的復(fù)賽成績比較好?
(3)已知一班的復(fù)賽成績的方差是70,請求出二班復(fù)試成績的方差,并說明哪個班成績比較穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB切⊙O于A.B,點(diǎn)C在AB上,DE切⊙O于C,交PA、PB于D.E,已知PO=5cm,⊙O的半徑為3cm,則△PDE的周長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸負(fù)半軸交于點(diǎn),與軸正半軸交于點(diǎn),點(diǎn)為直線上一點(diǎn),,點(diǎn)為軸正半軸上一點(diǎn),連接,的面積為48.
(1)如圖1,求點(diǎn)的坐標(biāo);
(2)如圖2,點(diǎn)分別在線段上,連接,點(diǎn)的橫坐標(biāo)為,點(diǎn)的橫坐標(biāo)為,求與的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(3)在(2)的條件下,如圖3,連接,點(diǎn)為軸正半軸上點(diǎn)右側(cè)一點(diǎn),點(diǎn)為第一象限內(nèi)一點(diǎn),,,延長交于點(diǎn),點(diǎn)為上一點(diǎn),直線經(jīng)過點(diǎn)和點(diǎn),過點(diǎn)作,交直線于點(diǎn),連接,請你判斷四邊形的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是直角梯形,AB=18cm,CD=15cm,AD=6cm,點(diǎn)P從B點(diǎn)開始,沿BA邊向點(diǎn)A以1cm/s的速度移動,點(diǎn)Q從D點(diǎn)開始,沿DC邊向點(diǎn)C以2cm/s的速度移動,如果P、Q分別從B、D同時出發(fā),P、Q有一點(diǎn)到達(dá)終點(diǎn)時運(yùn)動停止,設(shè)移動時間為t.
(1)t為何值時四邊形PQCB是平行四邊形?
(2)t為何值時四邊形PQCB是矩形?
(3)t為何值時四邊形PQCB是等腰梯形?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com