【題目】(1)計算:|﹣1|﹣(0+2cos60°
(2)解不等式:3(x﹣)<x+4.

【答案】【解答】解:(1)原式=1﹣1+2×=1;
(2)原不等式可化為3x﹣2<x+4,
∴3x﹣x<4+2,
∴2x<6,
∴x<3.
【解析】(1)利用絕對值的求法、零指數(shù)冪及銳角三角函數(shù)的知識代入求解即可;
(2)去括號、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1后即可求得不等式的解集.
【考點(diǎn)精析】利用零指數(shù)冪法則和一元一次不等式的解法對題目進(jìn)行判斷即可得到答案,需要熟知零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));步驟:①去分母;②去括號;③移項(xiàng);④合并同類項(xiàng); ⑤系數(shù)化為1(特別要注意不等號方向改變的問題).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E為AB中點(diǎn),求證:四邊形BCDE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把兩條中線互相垂直的三角形稱為“稱為中垂三角形”,例如圖1,圖2,圖3中,AF,BE是△ABC的中線,AF⊥BE,垂足為P,像△ABC這樣的三角形均稱為“中垂三角形”,設(shè)BC=a,AC=b,AB=c.

(1)特例探索
如圖1,當(dāng)∠ABE=45°,c=2時,a= ,b= 。
如圖2,當(dāng)∠ABE=30°,c=4時,a= ,b=
(2)歸納證明
請你觀察(1)中的計算結(jié)果,猜想a2 , b2 , c2三者之間的關(guān)系,用等式表示出來,并利用圖3證明你發(fā)現(xiàn)的關(guān)系式.
(3)如圖4,在ABCD中,點(diǎn)E、F、G分別是AD,BC,CD的中點(diǎn),BE⊥EG,AD=2,AB=3,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若銳角△ABC內(nèi)接于⊙O,點(diǎn)D在⊙O外(與點(diǎn)C在AB同側(cè)),則下列三個結(jié)論:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正確的結(jié)論為( 。

A.①②
B.②③
C.①②③
D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,點(diǎn)P(x,y)的橫坐標(biāo)x的絕對值表示為|x|,縱坐標(biāo)y的絕對值表示為|y|,我們把點(diǎn)P(x,y)的橫坐標(biāo)與縱坐標(biāo)的絕對值之和叫做點(diǎn)P(x,y)的勾股值,記為「P」,即「P」=|x|+|y|.(其中的“+”是四則運(yùn)算中的加法)
(1)求點(diǎn)A(﹣1,3),B(+2,﹣2)的勾股值「A」、「B」。
(2)點(diǎn)M在反比例函數(shù)y=的圖象上,且「M」=4,求點(diǎn)M的坐標(biāo)。
(3)求滿足條件「N」=3的所有點(diǎn)N圍成的圖形的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一幢樓房AB背后有一臺階CD,臺階每層高0.2米,且AC=17.2米,設(shè)太陽光線與水平地面的夾角為α,當(dāng)α=60°時,測得樓房在地面上的影長AE=10米,現(xiàn)有一只小貓睡在臺階的MN這層上曬太陽.(取1.73)

(1)求樓房的高度約為多少米?
(2)過了一會兒,當(dāng)α=45°時,問小貓能否還曬到太陽?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加某網(wǎng)店的“翻牌抽獎”活動,如圖,4張牌分別對應(yīng)價值5,10,15,20(單位:元)的4件獎品.

(1)如果隨機(jī)翻1張牌,那么抽中20元獎品的概率為
(2)如果隨機(jī)翻2張牌,且第一次翻過的牌不再參加下次翻牌,則所獲獎品總值不低于30元的概率為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:⊙O上兩個定點(diǎn)A,B和兩個動點(diǎn)C,D,AC與BD交于點(diǎn)E.

(1)如圖1,求證:EAEC=EBED
(2)如圖2,若 , AD是⊙O的直徑,求證:ADAC=2BDBC
(3)如圖3,若AC⊥BD,點(diǎn)O到AD的距離為2,求BC的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,且點(diǎn)A(0,2),點(diǎn)C(﹣1,0),如圖所示:拋物線y=ax2+ax﹣2經(jīng)過點(diǎn)B.

(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案