【題目】如圖1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.
(1)求點B的坐標(biāo);
(2)求證:四邊形ABCE是平行四邊形;
(3)如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

【答案】
(1)解:在△OAB中,∠OAB=90°,∠AOB=30°,OB=8,

∴OA=OBcos30°=8× =4 ,

AB=OBsin30°=8× =4,

∴點B的坐標(biāo)為(4 ,4)


(2)證明:∵∠OAB=90°,

∴AB⊥x軸,

∵y軸⊥x軸,

∴AB∥y軸,即AB∥CE,

∵∠AOB=30°,

∴∠OBA=60°,

∵DB=DO=4

∴DB=AB=4

∴∠BDA=∠BAD=120°÷2=60°,

∴∠ADB=60°,

∵△OBC是等邊三角形,

∴∠OBC=60°,

∴∠ADB=∠OBC,

即AD∥BC,

∴四邊形ABCE是平行四邊形


(3)解:設(shè)OG的長為x,

∵OC=OB=8,

∴CG=8﹣x,

由折疊的性質(zhì)可得:AG=CG=8﹣x,

在Rt△AOG中,AG2=OG2+OA2,

即(8﹣x)2=x2+(4 2

解得:x=1,

即OG=1


【解析】(1)由在△ABO中,∠OAB=90°,∠AOB=30°,OB=8,根據(jù)三角函數(shù)的知識,即可求得AB與OA的長,即可求得點B的坐標(biāo);(2)首先可得CE∥AB,D是OB的中點,根據(jù)直角三角形斜邊的中線等于斜邊的一半,可證得BD=AD,∠ADB=60°,又由△OBC是等邊三角形,可得∠ADB=∠OBC,根據(jù)內(nèi)錯角相等,兩直線平行,可證得BC∥AE,繼而可得四邊形ABCD是平行四邊形;(3)首先設(shè)OG的長為x,由折疊的性質(zhì)可得:AG=CG=8﹣x,然后根據(jù)勾股定理可得方程(8﹣x)2=x2+(4 2 , 解此方程即可求得OG的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】海中有一個小島P,它的周圍18海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航行,在點A測得小島P在北偏東60°方向上,航行12海里到達(dá)B點,這時測得小島P在北偏東45°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線EF,CD相交于點O,OA⊥OB,且OC平分∠AOF.
(1)若∠AOE=40°,求∠BOD的度數(shù);
(2)若∠AOE=α,求∠BOD的度數(shù).(用含α的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次植樹活動中,某班共有a名男生每人植樹3棵,共有b名女生每人植樹2棵,則該班同學(xué)一共植樹棵.(用含a,b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了響應(yīng)國家陽光體育活動,選派部分學(xué)生參加足球、乒乓球、籃球、排球隊集訓(xùn).根據(jù)參加項目制成如下兩幅不完整的統(tǒng)計圖(要求每位同學(xué)只能選擇一種自己喜歡的球類,圖中用足球、乒乓球、籃球、排球代表喜歡這四種球類某種球類的學(xué)生人數(shù),請你根據(jù)圖中提供的信息解答下列問題:

(1)參加籃球隊的有 人,參加足球隊的人數(shù)占全部參加人數(shù)的 %.

(2)喜歡排球隊的人數(shù)在扇形統(tǒng)計圖中所占的圓心角是多少度?并補全頻數(shù)分布折線統(tǒng)計圖.

(3)若足球隊只剩一個集訓(xùn)名額,學(xué)生小明和小虎都想?yún)⒓幼闱蜿牐瑳Q定采用隨機摸球的方式確定參加權(quán),具體規(guī)則如下:一個不透明的袋子中裝著標(biāo)有數(shù)字1、2、3、4的四個完全相同的小球,小明隨機地從四個小球中摸出一球然后放回,小虎再隨機地摸出一球,若小明摸出的小球標(biāo)有數(shù)字比小虎摸出的小球標(biāo)有的數(shù)字大,則小明參加;若小明摸出的小球標(biāo)有數(shù)字比小虎摸出的小球標(biāo)有的數(shù)字小,則小虎參加,試分析這種規(guī)則對雙方是否公平?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某工藝廠為配合倫敦奧運,設(shè)計了一款成本為20元/件的工藝品投入市場進(jìn)行試銷,得到如下數(shù)據(jù):

銷售單價x (元/件)

……

30

40

50

60

……

每天銷售量y(件)

……

500

400

300

200

……

(1)把上表中x、y的各組對應(yīng)值作為點的坐標(biāo),在右面的平面直角坐標(biāo)系中描出相應(yīng)的點,猜想yx的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;

(2)當(dāng)銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤為9000元?

(利潤=銷售總價-成本總價)

(3)根據(jù)要求,試銷該工藝品每天獲得的利潤不低于8000元,每天銷售量不低于350件,試確定銷售單價x(元/件)的取值范圍,并求出工藝廠試銷該工藝品每天獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】絕對值和相反數(shù)都是它本身的數(shù)是( 。

A. 1 B. ﹣1 C. 0 D. 所有正數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若|x|=3,|y|=4,則|x+y|的值為( 。

A. 7 B. ﹣7 C. 7或1 D. 以上都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算-3a·2b,正確的結(jié)果是 (  )

A. -6ab B. 6ab C. -ab D. ab

查看答案和解析>>

同步練習(xí)冊答案