【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于O點,且BE=BF,∠BEF=2∠BAC。
(1)求證:OE=OF;
(2)若BC=,求AB的長。
【答案】解:(1)證明:∵四邊形ABCD是矩形,∴DC∥AB。
∴∠OAE=∠OCF,∠OEA=∠OFC。
又∵AE=CF,∴△OEA≌△OFC(ASA)。
∴OE=OF。
(2)如圖,連接OB,
∵BE=BF,OE=OF,∴BO⊥EF,∠ABO=∠OBF。
∵∠BEF=2∠BAC,∴∠OBE=∠BAC。
又∵矩形ABCD中,∠ABC=900,∴∠BOE=∠ABC=900。
∴△OBE∽△BAC。∴。
∵∠BEF=2∠BAC,∴∠OAE=∠AOE。∴AE=OE。
設(shè)AB=x,AE=OE=y,則。
∵BC=,∴。
由(1)△OEA≌△OFC,得AO=CO,∴。
∴。∴①。
又∵,即,
化簡,得②。
由①②得,兩邊平方并化簡,得,
∴,∴根據(jù)x的實際意義,得x=6。
∴若BC=, AB的長為6。
【解析】試題分析:(1)根據(jù)△AEO和△CFO全等來進(jìn)行說明;(2)連接OB,得出△BOF和△BOE全等,然后求出∠BAC的度數(shù),根據(jù)∠BAC的正切值求出AB的長度.
試題解析:(1)∵四邊形ABCD是矩形,∴AB∥CD ∴∠OAE=∠OCF ∠OEA=∠OFC ∵AE=CF
∴△AEO≌△CFO ∴OE=OF
(2)連接BO ∵OE=OF BE=BF
∴BO⊥EF 且∠EBO=∠FBO ∴∠BOF=90°
∵四邊形ABCD是矩形
∴∠BCF=90°
∵∠BEF=2∠BAC ∠BEF=∠BAC+∠EOA
∴∠BAC=∠EOA AE=OE
∵AE=CF OE=OF
∴OF=CF 又∵BF=BF
∴Rt△BOF≌Rt△BCF
∴∠OBF=∠CBF
∴∠CBF=∠FBO=∠OBE
∵∠ABC=90° ∠OBE=30°
∴∠BEO=60° ∠BAC=30°
∵tan∠BAC=
∴tan30°=即∴AB=6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1+∠2=180°,∠3=∠B,∠4=65°,求證∠ACB=∠4.請?zhí)羁胀?/span>
成證明過程:
∵∠1+∠2=180°( )∠1+∠______=180°
∴∠2=∠DFE( )
∴AB∥EF( )
∴∠3=∠ADE( )
又∵∠3=∠B
∴∠ADE=∠_______
∴DE∥BC( )
∴∠ACB=∠4( )
∴∠ACB=65°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點,OD⊥AC,垂足為E,連接BD
(1)求證:BD平分∠ABC;
(2)當(dāng)∠ODB=30°時,求證:BC=OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC,BD相交于點O,O是AC的中點,AD//BC,AC=8,BD=6.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AC⊥BD,求□ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中∠C=90°,放置邊長分別為4、6、x的三個正方形,則x的值為( )
A.24
B.12
C.10
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為更好宣傳“開車不喝酒,喝酒不開車”的駕車?yán)砟,某市一家報社設(shè)計了如圖1的調(diào)查問卷(單選),在隨機(jī)調(diào)查了本市10000名司機(jī)中的部分司機(jī)后,統(tǒng)計整理并制作了如圖2所示的統(tǒng)計圖:
根據(jù)以上的信息解答下列問題:
(1)補(bǔ)全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中a= .
(2)該市支持選項C的司機(jī)大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,根據(jù)2013﹣2017年某市財政總收入(單位:億元)統(tǒng)計圖所提供的信息,下列判斷正確的是( )
A. 2013~2017年財政總收入呈逐年增長
B. 預(yù)計2018年的財政總收入約為253.43億元
C. 2014~2015年與2016~2017年的財政總收入下降率相同
D. 2013~2014年的財政總收入增長率約為6.3%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,拋物線y=x2+bx+c過點A(3,0),B(1,0),交y軸于點C,點P是該拋物線上一動點,點P從C點沿拋物線向A點運動(點P不與點A重合),過點P作PD∥y軸交直線AC于點D.
(1)求拋物線的解析式;
(2)求點P在運動的過程中線段PD長度的最大值;
(3)△APD能否構(gòu)成直角三角形?若能請直接寫出點P坐標(biāo),若不能請說明理由;
(4)在拋物線對稱軸上是否存在點M使|MA﹣MC|最大?若存在請求出點M的坐標(biāo),若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形A1B1B2C1 , A2B2B3C2 , A3B3B4C3 , …,AnBnBn+1Cn , 按如圖所示放置,使點A1、A2、A3、A4、…、An在射線OA上,點B1、B2、B3、B4、…、Bn在射線OB上.若∠AOB=45°,OB1=1,圖中陰影部分三角形的面積由小到大依次記作S1 , S2 , S3 , …,Sn , 則Sn= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com