【題目】如圖,已知∠1+∠2=180°,∠3=∠B,∠4=65°,求證∠ACB=∠4.請?zhí)羁胀?/span>

成證明過程:

∵∠1+∠2=180°( )∠1+∠______=180°

∴∠2=∠DFE( )

∴AB∥EF( )

∴∠3=∠ADE( )

又∵∠3=∠B

∴∠ADE=∠_______

∴DE∥BC( )

∴∠ACB=∠4( )

∴∠ACB=65°

【答案】已知;DFE;同角的補(bǔ)角相等;內(nèi)錯角相等,兩直線平行;兩直線平行,內(nèi)錯角相等;B;同位角相等,兩直線平行;兩直線平行,同位角相等.

【解析】

根據(jù)題意與平行線的判定和性質(zhì)逐一進(jìn)行回答即可.

證明:∵∠1+∠2=180° (已知),∠1+∠DFE=180°,

∴∠2=∠DFE (同角的補(bǔ)角相等),

∴AB∥EF (內(nèi)錯角相等,兩直線平行),

∴∠3=∠ADE (兩直線平行,內(nèi)錯角相等)

∵∠3=∠B,

∴∠ADE=∠B,

∴DE∥BC (同位角相等,兩直線平行),

∴∠ACB=∠4 (兩直線平行,同位角相等),

∴∠ACB=65°.

故答案為:已知;DFE;同角的補(bǔ)角相等;內(nèi)錯角相等,兩直線平行;兩直線平行,內(nèi)錯角相等;B;同位角相等,兩直線平行;兩直線平行,同位角相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=﹣+bx+c的圖象經(jīng)過點A(1,0),且當(dāng)x=0和x=5時所對應(yīng)的函數(shù)值相等.一次函數(shù)y=﹣x+3與二次函數(shù)y=﹣+bx+c的圖象分別交于B,C兩點,點B在第一象限.
(1)求二次函數(shù)y=﹣+bx+c的表達(dá)式;
(2)連接AB,求AB的長;
(3)連接AC,M是線段AC的中點,將點B繞點M旋轉(zhuǎn)180°得到點N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線AC,BD相交于點O,點E,F(xiàn)分別是邊AD,AB的中點,EF交AC于點H,則的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).

(1)把△ABC向上平移2個單位長度,再向右平移1個單位長度后得到△A1B1C1,請畫出△A1B1C1,并寫出點A1,B1,C1的坐標(biāo);

(2)求△A1B1C1的面積;

(3)點P在坐標(biāo)軸上,且△A1B1P的面積是2,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的圖形經(jīng)折疊后形成如圖所示的棱柱.

這個棱柱有幾個側(cè)面?側(cè)面?zhèn)數(shù)與底面邊數(shù)有什么關(guān)系?

中哪些圖形的形狀與大小一定完全相同?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線,直線和直線交于點C、D,直線上有一點P.

(1)如圖1,點PC、D之間運動時,∠PAC、∠APB、∠PBD之間有什么關(guān)系?并說明理由。

(2)若點PC、D兩點外側(cè)運動時(P點與C、D不重合,如圖2、3),試直接寫出∠PAC、∠APB、∠PBD之間有什么關(guān)系,不必寫理由。

1 2 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,直線,,分別通過A,B,C三點,且,若的距離為5,的距離為7,則正方形ABCD的面積等于( )

A. 148 B. 70 C. 144 D. 74

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B、E分別在AC、DF上,AF分別交BD、CE于點M、N,∠A=∠F,∠1=∠2.

(1)求證:四邊形BCED是平行四邊形;

(2)已知DE=2,連接BN,若BN平分DBC,求CN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點,AE=CF,連接EFBF,EF與對角線AC交于O點,且BE=BF∠BEF=2∠BAC。

1)求證:OE=OF

2)若BC=,求AB的長。

查看答案和解析>>

同步練習(xí)冊答案