【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,連接DE,若SADE=1,則四邊形DBCE的面積SDBCE=

【答案】3
【解析】解:∵在△ABC中,D、E分別是AB、AC的中點, ∴DE∥BC,且BE= BC,
∴△ADE∽△ABC,且相似比為1:2,
∵相似三角形的面積比是相似比的平方,
∴SADE:SABC的比=1:4,則△ADE的面積:四邊形DBCE的面積=1:3,
∵SADE=1,
∴四邊形DBCE的面積=3.
故填3.
【考點精析】根據(jù)題目的已知條件,利用三角形中位線定理和相似三角形的判定與性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的方程為 .以坐標(biāo)原點為極點,以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2﹣8ρsinθ+15=0. (Ⅰ)寫出C1的參數(shù)方程和C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)點P在C1上,點Q在C2上,求|PQ|的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在四邊形ABCD中,AD∥BC,E為邊CB延長線上一點,聯(lián)結(jié)DE交邊AB于點F,聯(lián)結(jié)AC交DE于點G,且 =
(1)求證:AB∥CD;
(2)如果AD2=DGDE,求證: =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,M為CD中點,分別以B、M為圓心,以BC長、MC長為半徑畫弧,兩弧相交于點P,若∠PBC=70°,則∠MPC的度數(shù)為(
A.55°
B.40°
C.35°
D.20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖①,在平面直角坐標(biāo)系xOy中,A(0,5),C( ,0),AOCD為矩形,AE垂直于對角線OD于E,點F是點E關(guān)于y軸的對稱點,連AF、OF.

(1)求AF和OF的長;
(2)如圖②,將△OAF繞點O順時針旋轉(zhuǎn)一個角α(0°<α<180°),記旋轉(zhuǎn)中的△OAF為△OA′F′,在旋轉(zhuǎn)過程中,設(shè)A′F′所在的直線與線段AD交于點P,與線段OD交于點Q,是否存在這樣的P、Q兩點,使△DPQ為等腰三角形?若存在,求出此時點P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=k1x+b與反比例函數(shù)y= 的圖象交于點A(﹣3,2)和點B(1,m),連接BO并延長與反比例函數(shù)y= 的圖象交于點C.
(1)求一次函數(shù)y=k1x+b和反比例函數(shù)y= 的表達(dá)式;
(2)是否在雙曲線y= 上存在一點D,使得以點A、B、D、C為頂點的四邊形成為平行四邊形?若存在,請直接寫出點D的坐標(biāo),并求出該平行四邊形的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩工程隊分別同時開挖兩條600米長的管道,所挖管道長度y(米)與挖掘時間x(天)之間的關(guān)系如圖所示,則下列說法中: ①甲隊每天挖100米;
②乙隊開挖兩天后,每天挖50米;
③甲隊比乙隊提前3天完成任務(wù);
④當(dāng)x=2或6時,甲乙兩隊所挖管道長度都相差100米.
正確的有 . (在橫線上填寫正確的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y= (a為常數(shù))的圖象經(jīng)過點B(﹣4,2).

(1)求a的值;
(2)如圖,過點B作直線AB與函數(shù)y= 的圖象交于點A,與x軸交于點C,且AB=3BC,過點A作直線AF⊥AB,交x軸于點F,求線段AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=2x2平移后經(jīng)過點A(0,3),B(2,3),求平移后的拋物線的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案