【題目】如圖,已知在四邊形ABCD中,AD∥BC,E為邊CB延長線上一點(diǎn),聯(lián)結(jié)DE交邊AB于點(diǎn)F,聯(lián)結(jié)AC交DE于點(diǎn)G,且 = .
(1)求證:AB∥CD;
(2)如果AD2=DGDE,求證: = .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,側(cè)面PAD⊥底面ABCD,底面ABCD是平行四邊形,∠ABC=45°,AD=AP=2,AB=DP=2 ,E為CD的中點(diǎn),點(diǎn)F在線段PB上.
(Ⅰ)求證:AD⊥PC;
(Ⅱ)當(dāng)三棱錐B﹣EFC的體積等于四棱錐P﹣ABCD體積的 時(shí),求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AB=9,cosB= ,把△ABC繞著點(diǎn)C旋轉(zhuǎn),使點(diǎn)B與AB邊上的點(diǎn)D重合,點(diǎn)A落在點(diǎn)E,則點(diǎn)A,E之間的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角三角形ABC中,∠ACB=90°,AB=10,sinB= ,點(diǎn)O是AB的中點(diǎn),∠DOE=∠A,當(dāng)∠DOE以點(diǎn)O為旋轉(zhuǎn)中心旋轉(zhuǎn)時(shí),OD交AC的延長線于點(diǎn)D,交邊CB于點(diǎn)M,OE交線段BM于點(diǎn)N.
(1)當(dāng)CM=2時(shí),求線段CD的長;
(2)設(shè)CM=x,BN=y,試求y與x之間的函數(shù)解析式,并寫出定義域;
(3)如果△OMN是以O(shè)M為腰的等腰三角形,請(qǐng)直接寫出線段CM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是邊長為2的等邊三角形,點(diǎn)D在邊BC上,將△ABD沿著直線AD翻折,點(diǎn)B落在點(diǎn)B1處,如果B1D⊥AC,那么BD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將筆記本電腦放置在水平桌面上,顯示屏OB與底板OA夾角為115°(如圖1),側(cè)面示意圖為圖2;使用時(shí)為了散熱,在底板下面墊入散熱架O′AC后,電腦轉(zhuǎn)到AO′B′的位置(如圖3),側(cè)面示意圖為圖4,已知OA=0B=20cm,B′O′⊥OA,垂足為C.
(1)求點(diǎn)O′的高度O′C;(精確到0.1cm)
(2)顯示屏的頂部B′比原來升高了多少?(精確到0.1cm)
(3)如圖4,要使顯示屏O′B′與原來的位置OB平行,顯示屏O′B′應(yīng)繞點(diǎn)O′按順時(shí)針方向旋轉(zhuǎn)多少度? 參考數(shù)據(jù):(sin65°=0.906,cos65°=0.423,tan65°=2.146.cot65°=0.446)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,過點(diǎn)A作AD⊥BC,垂足為點(diǎn)D,延長AD至點(diǎn)E,使DE= AD,過點(diǎn)A作AF∥BC,交EC的延長線于點(diǎn)F.
(1)設(shè) = , = ,用 、 的線性組合表示 ;
(2)求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),連接DE,若S△ADE=1,則四邊形DBCE的面積S△DBCE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中(AD>AB),點(diǎn)E是BC上一點(diǎn),且DE=DA,AF⊥DE,垂足為點(diǎn)F,在下列結(jié)論中,不一定正確的是( 。
A.△AFD≌△DCE
B.AF= AD
C.AB=AF
D.BE=AD﹣DF
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com