【題目】某校開展課外活動,分音樂、體育、美術(shù)、制作四個活動項目,隨機抽取部分學(xué)生對其選擇參加的活動項目進行調(diào)查統(tǒng)計,制成了兩幅不完整的統(tǒng)計圖.
請根據(jù)上述統(tǒng)計圖提供的信息,完成下列問題:
(1)這次抽查的樣本容量是 ;
(2)請補全上述條形統(tǒng)計圖,并求出扇形圖中“美術(shù)”所占的圓心角度數(shù);
(3)若該校有2000名學(xué)生,請你用此樣本估計參加“藝術(shù)”類活動項目(“藝術(shù)”類活動包括“音樂”和“美術(shù)”兩個項目)的學(xué)生人數(shù)約為多少人.
【答案】(1)50;(2)圖見解析,72°;(3)1000人
【解析】
(1)根據(jù)體育的人數(shù)除以占的百分比求出調(diào)查的學(xué)生總數(shù)即可;
(2)求出“音樂”與“制作”的人數(shù),補全條形統(tǒng)計圖即可;
(3)求出音樂與美術(shù)的百分比,乘以2000即可得到結(jié)果.
解:(1)根據(jù)題意得:20÷40%=50;
故答案為:50;
(2)根據(jù)題中的數(shù)據(jù)得:條形圖中“音樂”15人,“制作”5人,如圖所示:
則“美術(shù)”所占的角度數(shù)為360°×=72°;
(3)參加“藝術(shù)”類活動項目的學(xué)生有:2000×(+)=1000(人).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,以點O為圓心的圓分別交x軸的正半軸于點M,交y軸的正半軸于點N.劣弧的長為,直線與x軸、y軸分別交于點A、B.
(1)求證:直線AB與⊙O相切;
(2)求圖中所示的陰影部分的面積(結(jié)果用π表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】上圖為2009年到2015年中關(guān)村國家自主創(chuàng)新示范區(qū)企業(yè)經(jīng)營技術(shù)收入的統(tǒng)計圖.
下面四個推斷:
①2009 年到2015年技術(shù)收入持續(xù)增長;
②2009年到2015年技術(shù)收入的中位數(shù)是3403億;
③2009年到2015年技術(shù)收入增幅最大的是2015年;
④2009年到2011年的技術(shù)收入平均增長率比2013年到2015年技術(shù)收入平均增長率大.
其中,正確的是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(5,9),已知拋物線的頂點D的橫坐標(biāo)是2.
(1)求拋物線的解析式及頂點坐標(biāo);
(2)在軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標(biāo),若不存在,請說明理由;
(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某漁場計劃購買甲、乙兩種魚苗共6000尾,甲種魚苗每尾0.5元,乙種魚苗每尾0.8元.相關(guān)資料表明:甲、乙兩種魚苗的成活率分別為90%和95%.
(1)若購買這批魚苗共用了3600元,求甲、乙兩種魚苗各購買了多少尾?
(2)若購買這批魚苗的錢不超過4200元,應(yīng)如何選購魚苗?
(3)若要使這批魚苗的成活率不低于93%,且購買魚苗的總費用最低,應(yīng)如何選購魚苗?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AB=8,點C和點D是⊙O上關(guān)于直線AB對稱的兩個點,連接OC、AC,且∠BOC<90°,直線BC和直線AD相交于點E,過點C作直線CG與線段AB的延長線相交于點F,與直線AD相交于點G,且∠GAF=∠GCE
(1)求證:直線CG為⊙O的切線;
(2)若點H為線段OB上一點,連接CH,滿足CB=CH,
①△CBH∽△OBC
②求OH+HC的最大值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一個直角三角形紙片,放置在平面直角坐標(biāo)系中,點,點,點
(I)過邊上的動點 (點不與點,重合)作交于點,沿著折疊該紙片,點落在射線上的點處.
①如圖,當(dāng)為中點時,求點的坐標(biāo);
②連接,當(dāng)為直角三角形時,求點坐標(biāo):
(Ⅱ)是邊上的動點(點不與點重合),將沿所在的直線折疊,得到,連接,當(dāng)取得最小值時,求點坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于下列結(jié)論:
①二次函數(shù),當(dāng)時,隨的增大而增大.
②關(guān)于的方程的解是,(、、均為常數(shù),),則方程的解是,.
③設(shè)二次函數(shù),當(dāng)時,總有,當(dāng)時,總有,那么的取值范圍是.
其中,正確結(jié)論的個數(shù)是( 。
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生參加戶外活動的情況,和諧中學(xué)對學(xué)生每天參加戶外活動的時間進行抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計圖,根據(jù)圖示,請回答下列問題:
(1)被抽樣調(diào)查的學(xué)生有______人,并補全條形統(tǒng)計圖;
(2)每天戶外活動時間的中位數(shù)是______(小時);
(3)該校共有2000名學(xué)生,請估計該校每天戶外活動時間超過1小時的學(xué)生有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com