【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問題

1)這次統(tǒng)計(jì)共抽查了________名學(xué)生;在扇形統(tǒng)計(jì)圖中表示QQ的扇形圓心角的度數(shù)為___________;

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整

3)某天甲、乙兩名同學(xué)都想從微信、QQ、電話三種溝通方式中選一種方式與對(duì)方聯(lián)系請(qǐng)用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率

【答案】(1)100,108°;(2)短信:5 ,微信:40;(3)

【解析】試題分析:(1)根據(jù)喜歡電話溝通的人數(shù)與百分比即可求出共抽查人數(shù),求出使用QQ的百分比即可求出QQ的扇形圓心角度數(shù).

(2)計(jì)算出短信與微信的人數(shù)即可補(bǔ)全統(tǒng)計(jì)圖.

(3)列出樹狀圖分別求出所有情況以及甲、乙兩名同學(xué)恰好選中同一種溝通方式的情況后,利用概念公式即可求出甲、乙兩名同學(xué)恰好選中同一種溝通方式的概率.

試題解析:

解:(1)喜歡用電話溝通的人數(shù)為20,所占百分比為20%,

∴此次共抽查了:20÷20%=100人.

喜歡用QQ溝通所占比例為:30÷100=30%,

∴“QQ”的扇形圓心角的度數(shù)為:360°×30%=108°.

故答案為:100,108°;

(2)喜歡用短信的人數(shù)為:100×5%=5人,

喜歡用微信的人數(shù)為:100-20-5-30-5=40人,

補(bǔ)充圖形,如圖所示:

(3)列出樹狀圖,如圖所示:

所有情況共有9種情況,其中兩人恰好選中同一種溝通方式共有3種情況,

甲、乙兩名同學(xué)恰好選中同一種溝通方式的概率為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖, AF平分∠BAC,BC⊥AF, 垂足為E,點(diǎn)D與點(diǎn)A關(guān)于點(diǎn)E對(duì)稱,PB分別與線段CF,AF相交于P,M

1)求證:AB=CD;

2)若∠BAC=2∠MPC,請(qǐng)你判斷∠F∠MCD的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知長方形,點(diǎn),.

1)如圖,有一動(dòng)點(diǎn)在第二象限的角平分線上,若,求的度數(shù);

2)若把長方形向上平移,得到長方形.

①在運(yùn)動(dòng)過程中,求的面積與的面積之間的數(shù)量關(guān)系;

②若,求的面積與的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年是中國建國70周年,作為新時(shí)期的青少年,我們應(yīng)該肩負(fù)起實(shí)現(xiàn)粗國偉大復(fù)興的責(zé)任,為了培養(yǎng)學(xué)生的愛國主義情懷,我校學(xué)生和老師在5月下旬集體乘車去抗日戰(zhàn)爭紀(jì)念館研學(xué),已知學(xué)生的人數(shù)是老師人數(shù)的12倍多20人,學(xué)生和老師總?cè)藬?shù)有540人.

1)請(qǐng)求出去抗日戰(zhàn)爭紀(jì)念館研學(xué)的學(xué)生和老師的人數(shù)各是多少?

2)如果學(xué)校準(zhǔn)備租賃A型車和B型車共14輛(其中B型車最多7輛),已知A型車每車最多可以載35人,日租金為2000元,B型車每車最多可以載45人,日租金為3000元,請(qǐng)求出最經(jīng)濟(jì)的租車方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市防洪大堤的橫截面如圖所示,已知AEBC背水坡AB的坡度,AB=26米.身高1.8米的小明豎直站立于A點(diǎn)眼睛在M點(diǎn)處測得豎立的高壓電線桿頂端D點(diǎn)的仰角為24°,已知地面CB30則高壓電線桿CD的高度約為(  。ńY(jié)果精確到整數(shù),參考數(shù)據(jù)sin24°≈0.40cos24°≈0.91,tan24°≈0.45

A. 33 B. 34 C. 35 D. 36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)數(shù)軸和絕對(duì)值的知識(shí)回答下列問題

(1)一般地,數(shù)軸上表示數(shù)m和數(shù)n兩點(diǎn)之間的距離我們可用│m-n│表示。

例如,數(shù)軸上41兩點(diǎn)之間的距離是________.數(shù)軸上-32兩點(diǎn)之間的距離是________.

(2) 數(shù)軸上表示數(shù)a的點(diǎn)位于-42之間,則│a+4│+│a-2│的值為_____________.

(3) 當(dāng)a為何值時(shí),│a+5│+│a-1│+│a-4│有最小值?最小值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中拋物線x軸交于B(-3,0)、C1,0兩點(diǎn),y軸交于點(diǎn)A0,2),拋物線的頂點(diǎn)為D連接AB,點(diǎn)E是第二象限內(nèi)的拋物線上的一動(dòng)點(diǎn)過點(diǎn)EEPBC于點(diǎn)P,交線段AB于點(diǎn)F

1求此拋物線的解析式

2過點(diǎn)EEGAB于點(diǎn)G,Q為線段AC的中點(diǎn),當(dāng)EGF周長最大時(shí) 軸上找一點(diǎn)R,使得|RERQ|值最大請(qǐng)求出R點(diǎn)的坐標(biāo)及|RERQ|的最大值;

3)在(2)的條件下,PEDE點(diǎn)旋轉(zhuǎn)得EDP當(dāng)APP是以AP為直角邊的直角三角形時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)學(xué)習(xí)中,及時(shí)對(duì)知識(shí)進(jìn)行歸納和整理是完善知識(shí)結(jié)構(gòu)的重要方法.善于學(xué)習(xí)的小明在學(xué)習(xí)了一次方程(組)、一元一次不等式和一次函數(shù)后,把相關(guān)知識(shí)歸納整理如下:

(1)請(qǐng)你根據(jù)以上方框中的內(nèi)容在下面數(shù)字序號(hào)后寫出相應(yīng)的結(jié)論:

     ;②     ;③     ;④     .

(2)如果點(diǎn)C的坐標(biāo)為(1,3) ,求不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角△ABC中,∠ACB=90°O是斜邊AB的中點(diǎn),點(diǎn)DE分別在直角邊AC,BC上,且∠DOE=90°,DEOC于點(diǎn)P.則下列結(jié)論:(1)AD+BE=AC(2)AD2+BE2=DE2;(3)ABC的面積等于四邊形CDOE面積的2倍;(4)OD=OE.其中正確的結(jié)論有( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案