【題目】如圖,一次函數(shù)y=-x+m(m>0)的圖象與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)C在線段OA上,點(diǎn)C的橫坐標(biāo)為n,點(diǎn)D在線段AB上,且AD=2BD,將ACD繞點(diǎn)D旋轉(zhuǎn)180°后得到A1C1D.

(1)若點(diǎn)C1恰好落在y軸上,試求的值;

(2)當(dāng)n=4時(shí),若A1C1D被y軸分得兩部分圖形的面積比為3:5,求該一次函數(shù)的解析式.

【答案】(1);(2)y=-x+或y=-x+

【解析】

(1)根據(jù)題意得到B(0,m),A(2m,0),過點(diǎn)D作x軸的垂線,交x軸于點(diǎn)E,交直線A1C1于點(diǎn)F,求得DE=m,D(m,m),C1m-n,m),根據(jù)y軸點(diǎn)的特點(diǎn)得到m-n=0,即可求得結(jié)論;

(2)由(1)得,當(dāng)m>3時(shí),點(diǎn)C1在y軸右側(cè);當(dāng)2<m<3時(shí),點(diǎn)C1在y軸左側(cè).根據(jù)已知條件列方程即可得到結(jié)論.

(1)由題意,得B(0,m),A(2m,0),

如圖,過點(diǎn)D作x軸的垂線,交x軸于點(diǎn)E,交直線A1C1于點(diǎn)F,

易知:DE=m,D(m,m),C1m-n,m),

m-n=0,

;

(2)由(1)得,當(dāng)m>3時(shí),點(diǎn)C1在y軸右側(cè);當(dāng)2<m<3時(shí),點(diǎn)C1在y軸左側(cè).

當(dāng)m>3時(shí),設(shè)A1C1與y軸交于點(diǎn)P,連接C1B,

A1C1D被y軸分得兩部分圖形的面積比為3:5,

SBA1P:SBC1P=3:1,

A1P:C1P=3,

m=3(m-4),

m=,

y=-x+;

當(dāng)2<m<3時(shí),同理可得:y=-x+;

綜上所述,y=-x+或y=-x+

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),為等腰三角形,,點(diǎn)是底邊上的一個(gè)動(dòng)點(diǎn),,.

1)用表示四邊形的周長(zhǎng)為  ;

2)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形是菱形,請(qǐng)說明理由;

3)如果不是等腰三角形圖(2),其他條件不變,點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形是菱形(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為提倡節(jié)約用水,準(zhǔn)備實(shí)行自來水階梯計(jì)費(fèi)方式,用戶用水不超出基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行加價(jià)收費(fèi),為更好地做決策,自來水公司隨機(jī)抽取部分用戶的用水量數(shù)據(jù),并繪制了如圖不完整的統(tǒng)計(jì)圖(每組數(shù)據(jù)包括最大值但不包括最小值),請(qǐng)你根據(jù)統(tǒng)計(jì)圖解決下列問題:

(1)此次抽樣調(diào)查的樣本容量是   

(2)補(bǔ)全左側(cè)統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中“25噸~30部分的圓心角度數(shù).

(3)如果自來水公司將基本用水量定為每戶25噸,那么該地區(qū)6萬用戶中約有多少用戶的用水全部享受基本價(jià)格?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知拋物線(k為常數(shù)).

(1)若拋物線經(jīng)過點(diǎn)(1,k2),求k的值;

(2)若拋物線經(jīng)過點(diǎn)(2k,y1)和點(diǎn)(2,y2),且y1>y2,求k的取值范圍;

(3)若將拋物線向右平移1個(gè)單位長(zhǎng)度得到新拋物線,當(dāng)1≤x≤2時(shí),新拋物線對(duì)應(yīng)的函數(shù)有最小值,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中有一格點(diǎn)三角形,該三角形的三個(gè)頂點(diǎn)為:A(1,1),B(-3,1),C(-3,-1).

(1)若ABC的外接圓的圓心為P,則點(diǎn)P的坐標(biāo)為 P的半徑為

(2)如圖所示,在11×8的網(wǎng)格圖內(nèi),以坐標(biāo)原點(diǎn)O點(diǎn)為位似中心,將ABC按相似比2:1放大,A、B、C的對(duì)應(yīng)點(diǎn)分別為A'、B'、C'.

畫出A'B'C';

A'B'C'沿x軸方向平移,需平移 個(gè)單位長(zhǎng)度,能使得B'C'所在的直線與P相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCDAB=,BC=1,將矩形ABCD繞頂點(diǎn)B旋轉(zhuǎn)得到矩形A'BC'D,點(diǎn)A恰好落在矩形ABCD的邊CD上,則AD掃過的部分(即陰影部分)面積為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y= x軸交于點(diǎn)A2,0)和點(diǎn)B,與y軸交于點(diǎn)C0,3),經(jīng)過點(diǎn)A的射線AMy軸相交于點(diǎn)E,與拋物線的另一個(gè)交點(diǎn)為F,且.

1)求這條拋物線的表達(dá)式,并寫出它的對(duì)稱軸;

2)求∠FAB的余切值;

3)點(diǎn)D是點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn),點(diǎn)Py軸上一點(diǎn),且∠AFP=DAB,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)一種每件價(jià)格為100元的新商品,在商場(chǎng)試銷發(fā)現(xiàn):銷售單價(jià)x(/)與每天銷售量y()之間滿足如圖所示的關(guān)系:

(1)求出yx之間的函數(shù)關(guān)系式;

(2)寫出每天的利潤(rùn)W與銷售單價(jià)x之間的函數(shù)關(guān)系式;若你是商場(chǎng)負(fù)責(zé)人,會(huì)將售價(jià)定為多少,來保證每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=-x2+2x+3.

(1)求函數(shù)圖像的頂點(diǎn)坐標(biāo),并畫出這個(gè)函數(shù)的圖像;

(2)根據(jù)圖像,直接寫出:

①當(dāng)函數(shù)值y為正數(shù)時(shí),自變量x的取值范圍;

②當(dāng)-2<x<2時(shí),函數(shù)值y的取值范圍;

③若經(jīng)過點(diǎn)(0,k)且與x軸平行的直線l與y=-x2+2x+3的圖像有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案