【題目】下列尺規(guī)作圖中,能確定圓心的是( 。
①如圖1,在圓上任取三個點A,B,C,分別作弦AB,BC的垂直平分線,交點O即為圓心
②如圖2,在圓上任取一點B,以B為圓心,小于直徑長為半徑畫弧交圓于A,C兩點連結AB,BC,作∠ABC的平分線交圓于點D,作弦BD的垂直平分線交BD于點O,點O即為圓心
③如圖3,在圓上截取弦AB=CD,連結AB,BC,CD,分別作∠ABC與∠DCB的平分線,交點O即為圓心
A. ①②B. ①③C. ②④D. ①②③
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB,AD是⊙O的弦,AO平分.過點B作⊙O的切線交AO的延長線于點C,連接CD,BO.延長BO交⊙O于點E,交AD于點F,連接AE,DE.
(1)求證:是⊙O的切線;
(2)若,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+1的圖象交x軸于A(﹣2,0),B(1,0)兩點,交y軸于點C,點D是第四象限內拋物線上的一個動點,過點D作DE∥y軸交x軸于點E,線段CB的延長線交DE于點M,連接OM,BD交于點N.
(1)求二次函數(shù)的表達式;
(2)當S△OEM=S△DBE時,求點D的坐標及sin∠DAE的值;
(3)在(2)的條件下,點P是x軸上一個動點,求的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有兩張完全重合的矩形紙片,小亮同學將其中一張繞點A順時針旋轉90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30度.請回答下列問題:(1)試探究線段BD與線段MF的關系,并簡要說明理由;
(2)小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉得△AB1D1,AD1交FM于點K(如圖2),設旋轉角為β(0°<β<90°),當△AFK為等腰三角形時,請直接寫出旋轉角β的度數(shù);
(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2與AD交于點P,A2M2與BD交于點N,當NP∥AB時,求平移的距離是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經過原點O,頂點A(1,﹣1),且與直線y=kx+2相交于B(2,0)和C兩點
(1)求拋物線和直線BC的解析式;
(2)求證:△ABC是直角三角形;
(3)拋物線上存在點E(點E不與點A重合),使∠BCE=∠ACB,求出點E的坐標;
(4)在拋物線的對稱軸上是否存在點F,使△BDF是等腰三角形?若存在,請直接寫出點F的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)圖象的頂點為(﹣1,1),且與反比例函數(shù)的圖象交于點A(﹣3,﹣3)
(1)求二次函數(shù)與反比例函數(shù)的解析式;
(2)判斷原點(0,0)是否在二次函數(shù)的圖象上,并說明理由;
(3)根據圖象直接寫出二次函數(shù)的值小于反比例函數(shù)的值時自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,且AB=10,弦MN的長為8,若弦MN的兩端在圓周上滑動,始終與AB相交.記點A,B到MN的距離分別為h1,h2,則|h1﹣h2|等于_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的中線,過點C作直線CF∥AD.
(問題)如圖①,過點D作直線DG∥AB交直線CF于點E,連結AE,求證:AB=DE.
(探究)如圖②,在線段AD上任取一點P,過點P作直線PG∥AB交直線CF于點E,連結AE、BP,探究四邊形ABPE是哪類特殊四邊形并加以證明.
(應用)在探究的條件下,設PE交AC于點M.若點P是AD的中點,且△APM的面積為1,直接寫出四邊形ABPE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+3經過點A(﹣3,0),B(﹣1,0)兩點,拋物線的頂點為M,直線y=﹣4x+9與y軸交于點C,與直線OM交于點D.
(1)求拋物線的解析式;
(2)過Q(0,3)作不平行于x軸的直線l
①如圖2,將拋物線平移,當頂點至原點時,直線l交拋物線于點E、F,在y軸上存在一點P,使△PEF的內心在y軸上,求點P的坐標;
②直線l交△CMD的邊CM、CD于點G、H(G點不與M點重合、H點不與D點重合).S四邊形MDHG,S△CGH分別表示四邊形MDHG和△CGH的面積,試探究的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com