【題目】如圖,ABO的直徑,且AB10,弦MN的長為8,若弦MN的兩端在圓周上滑動,始終與AB相交.記點A,BMN的距離分別為h1h2,則|h1h2|等于_____

【答案】8

【解析】

設(shè)ABNM交于H,做ODMND,連接ON,利用垂徑定理及勾股定理可求出OD,再推△AFH∽△ODH∽△BEH,得出比例式,從而可求出答案.

設(shè)ABNM交于H,作ODMND,連接ON

ABO的直徑,且AB10,弦MN的長為8,

DNDM4,

ON5

OD3

BEMN,AFMN,ODMN,

BEODAF

∴△AFH∽△ODH∽△BEH,

,即,

,即

AFBE)=﹣2,

|h1h2||AFBE|6

故答案為:6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,圓心為P,)的動圓經(jīng)過點A1,2)且與軸相切于點B.

1)當(dāng)=2是,求⊙P的半徑;

2)求關(guān)于的函數(shù)解析式,在圖②中畫出此函數(shù)圖像;

3)請類比圓的定義(圓可以看成是到定點的距離等于定長的所有點的集合),給(2)中所得函數(shù)圖像進(jìn)行定義:此函數(shù)圖像可以看成是到 的距離等于到 的距離的所有點的集合;

(4)當(dāng)⊙P的半徑為1時,若⊙P與以上(2)中所得函數(shù)圖象相交于點CD,其中交點D)在點C的右側(cè),請利用圖②,則cosAPD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形OA1B1C1的邊長為1,以O為圓心,OA1為半徑作扇形OA1C1,弧A1C1OB1相交于點B2,設(shè)正方形OA1B1C1與扇形OA1C1之間的陰影部分的面積為S1;然后以OB2為對角線作正方形OA2B2C2,又以O為圓心,OA2為半徑作扇形OA2C2,弧A2C2OB1相交于點B3,設(shè)正方形OA2B2C2與扇形OA2C2之間的陰影部分面積為S2;按此規(guī)律繼續(xù)作下去,設(shè)正方形OA2018B2018C2018與扇形OA2018C2018之間的陰影部分面積為S2018,則S2018____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列尺規(guī)作圖中,能確定圓心的是( 。

如圖1,在圓上任取三個點A,BC,分別作弦AB,BC的垂直平分線,交點O即為圓心

如圖2,在圓上任取一點B,以B為圓心,小于直徑長為半徑畫弧交圓于AC兩點連結(jié)AB,BC,作∠ABC的平分線交圓于點D,作弦BD的垂直平分線交BD于點O,點O即為圓心

如圖3,在圓上截取弦ABCD,連結(jié)AB,BC,CD,分別作∠ABC與∠DCB的平分線,交點O即為圓心

A. ①②B. ①③C. ②④D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD的對角線相交于點M,△ABM的外接圓交AD于點E且圓心O恰好落在AD邊上,連接ME,若∠BCD45°

1)求證:BCO切線;

2)求∠ADB的度數(shù);

3)若ME1,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A(﹣1,0),B3,0)兩點,與y軸交于點C,頂點為D

1)求此拋物線的函數(shù)表達(dá)式;

2)以點B為直角頂點作直角三角形BCE,斜邊CE與拋物線交于點P,且CPEP,求點P的坐標(biāo);

3)△BOC繞著它的頂點B順時針在第一象限內(nèi)旋轉(zhuǎn),旋轉(zhuǎn)的角度為α,旋轉(zhuǎn)后的圖形為△BO1C1.當(dāng)旋轉(zhuǎn)后的△BO1C1有一邊在直線BD上時,求△BO1C1不在BD上的頂點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店第一個月以每件100元的價格購進(jìn)200件襯衫,以每件150元的價格售罄.由于市場火爆,該商店第二個月再次購進(jìn)一批襯衫,與第一批襯衫相比,這批襯衫的進(jìn)價和數(shù)量都有一定的提高,其數(shù)量的增長率是進(jìn)價增長率的2.5倍,該批襯衫仍以每件150元銷售.第二個月結(jié)束后,商店對剩余的50件襯衫以每件120元的價格一次性清倉銷售,商店出售這兩批襯衫共盈利17500元.設(shè)第二批襯衫進(jìn)價的增長率為x

1)第二批襯衫進(jìn)價為 元,購進(jìn)的數(shù)量為 件.(都用含x的代數(shù)式表示,不需化簡)

2)求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家飲水機中原有水的溫度為20℃,通電開機后,飲水機自動開始加熱[此過程中水溫y(℃)與開機時間x(分)滿足一次函數(shù)關(guān)系],當(dāng)加熱到100℃時自動停止加熱,隨后水溫開始下降[此過程中水溫y(℃)與開機時間x(分)成反比例關(guān)系],當(dāng)水溫降至20℃時,飲水機又自動開始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問題:

(1)當(dāng)0≤x≤8時,求水溫y(℃)與開機時間x(分)的函數(shù)關(guān)系式;

(2)求圖中t的值;

(3)若小明在通電開機后即外出散步,請你預(yù)測小明散步45分鐘回到家時,飲水機內(nèi)的溫度約為多少℃?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把長方形紙片ABCD沿對角線折疊,設(shè)重疊部分為△EBD,那么,有下列說法:①△EBD是等腰三角形,EBED;②折疊后∠ABE和∠CBD一定相等;③折疊后得到的圖形是軸對稱圖形;④△EBA和△EDC一定是全等三角形.其中正確的是( )

A. ①②③B. ①③④C. ①②④D. ①②③④

查看答案和解析>>

同步練習(xí)冊答案