【題目】如圖,把長(zhǎng)方形紙片ABCD沿對(duì)角線折疊,設(shè)重疊部分為△EBD,那么,有下列說法:①△EBD是等腰三角形,EB=ED;②折疊后∠ABE和∠CBD一定相等;③折疊后得到的圖形是軸對(duì)稱圖形;④△EBA和△EDC一定是全等三角形.其中正確的是( )
A. ①②③B. ①③④C. ①②④D. ①②③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用32m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.
(1)若花園的面積為252m2,求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是17m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)的左邊)與軸交于點(diǎn),連接,過點(diǎn)作直線的平行線交拋物線于另一點(diǎn),交軸于點(diǎn),則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖:過直線外一點(diǎn)作已知直線的平行線.
已知:如圖,直線l與直線l外一點(diǎn)P.
求作:過點(diǎn)P與直線l平行的直線.
已知:如圖,直線l與直線l外一點(diǎn)P.
求作:過點(diǎn)P與直線l平行的直線.
作法如下:
(1)在直線l上任取兩點(diǎn)A、B,連接AP、BP;
(2)以點(diǎn)B為圓心,AP長(zhǎng)為半徑作弧,以點(diǎn)P為圓心,AB長(zhǎng)為半徑作弧,如圖所示,兩弧相交于點(diǎn)M;
(3)過點(diǎn)P、M作直線;
(4)直線PM即為所求.
(1)在直線l上任取兩點(diǎn)A、B,連接AP、BP;
(2)以點(diǎn)B為圓心,AP長(zhǎng)為半徑作弧,以點(diǎn)P為圓心,AB長(zhǎng)為半徑作弧,如圖所示,兩弧相交于點(diǎn)M;
(3)過點(diǎn)P、M作直線;
(4)直線PM即為所求.
請(qǐng)回答:PM平行于l的依據(jù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB為半圓O的直徑,半徑的長(zhǎng)為4cm,點(diǎn)C為半圓上一動(dòng)點(diǎn),過點(diǎn)C作CE⊥AB,垂足為點(diǎn)E,點(diǎn)D為弧AC的中點(diǎn),連接DE,如果DE=2OE,求線段AE的長(zhǎng).
小何根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),將此問題轉(zhuǎn)化為函數(shù)問題解決.
小華假設(shè)AE的長(zhǎng)度為xcm,線段DE的長(zhǎng)度為ycm.
(當(dāng)點(diǎn)C與點(diǎn)A重合時(shí),AE的長(zhǎng)度為0cm),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行探究.
下面是小何的探究過程,請(qǐng)補(bǔ)充完整:(說明:相關(guān)數(shù)據(jù)保留一位小數(shù)).
(1)通過取點(diǎn)、畫圖、測(cè)量,得到了x與y的幾組值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
y/cm | 0 | 1.6 | 2.5 | 3.3 | 4.0 | 4.7 |
| 5.8 | 5.7 |
當(dāng)x=6cm時(shí),請(qǐng)你在圖中幫助小何完成作圖,并使用刻度尺度量此時(shí)線段DE的長(zhǎng)度,填寫在表格空白處:
(2)在圖2中建立平面直角坐標(biāo)系,描出補(bǔ)全后的表中各組對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象解決問題,當(dāng)DE=2OE時(shí),AE的長(zhǎng)度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點(diǎn),點(diǎn)P在線段AD上,過P作PF⊥AE于F,設(shè)PA=x.
(1)求證:△PFA∽△ABE;
(2)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),設(shè)PA=x,是否存在實(shí)數(shù)x,使得以點(diǎn)P,F,E為頂點(diǎn)的三角形也與△ABE相似?若存在,請(qǐng)求出x的值;若不存在,請(qǐng)說明理由;
(3)探究:當(dāng)以D為圓心,DP為半徑的⊙D與線段AE只有一個(gè)公共點(diǎn)時(shí),請(qǐng)直接寫出x滿足的條件: .
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)在數(shù)學(xué)興趣小組活動(dòng)中,小明進(jìn)行數(shù)學(xué)探究活動(dòng).將邊長(zhǎng)為2的正方形ABCD與邊長(zhǎng)為的正方形AEFG按圖1位置放置,AD與AE在同一條直線上,AB與AG在同一條直線上.
(1)小明發(fā)現(xiàn),請(qǐng)你幫他說明理由.
(2)如圖2,小明將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)B恰好落在線段DG上時(shí),請(qǐng)你幫他求出此時(shí)BE的長(zhǎng).
(3)如圖3,若小明將正方形ABCD繞點(diǎn)A繼續(xù)逆時(shí)針旋轉(zhuǎn),線段DG與線段BE將相交,交點(diǎn)為H,寫出△與△面積之和的最大值,并簡(jiǎn)要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解本校九年級(jí)學(xué)生足球訓(xùn)練情況,隨機(jī)抽查該年級(jí)若干名學(xué)生進(jìn)行測(cè)試,然后把測(cè)試結(jié)果分為4個(gè)等級(jí):A、B、C、D,并將統(tǒng)計(jì)結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中的信息解答下列問題
(1)補(bǔ)全條形統(tǒng)計(jì)圖
(2)該年級(jí)共有700人,估計(jì)該年級(jí)足球測(cè)試成績(jī)?yōu)镈等的人數(shù)為__________人;
(3)在此次測(cè)試中,有甲、乙、丙、丁四個(gè)班的學(xué)生表現(xiàn)突出,現(xiàn)決定從這四個(gè)班中隨機(jī)選取兩個(gè)班在全校舉行一場(chǎng)足球友誼賽.請(qǐng)用畫樹狀圖或列表的方法,求恰好選到甲、乙兩個(gè)班的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+b與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,拋物線y=ax2﹣4ax+4經(jīng)過點(diǎn)A和點(diǎn)B,并與x軸相交于另一點(diǎn)C,對(duì)稱軸與x軸相交于點(diǎn) D.
(1)求拋物線的表達(dá)式;
(2)求證:△BOD∽△AOB;
(3)如果點(diǎn)P在線段AB上,且∠BCP=∠DBO,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com