【題目】有兩張完全重合的矩形紙片,小亮同學(xué)將其中一張繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到矩形AMEF(如圖1),連接BD、MF,若此時(shí)他測(cè)得BD=8cm,∠ADB=30度.請(qǐng)回答下列問(wèn)題:(1)試探究線段BD與線段MF的關(guān)系,并簡(jiǎn)要說(shuō)明理由;
(2)小紅同學(xué)用剪刀將△BCD與△MEF剪去,與小亮同學(xué)繼續(xù)探究.他們將△ABD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得△AB1D1,AD1交FM于點(diǎn)K(如圖2),設(shè)旋轉(zhuǎn)角為β(0°<β<90°),當(dāng)△AFK為等腰三角形時(shí),請(qǐng)直接寫出旋轉(zhuǎn)角β的度數(shù);
(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2與AD交于點(diǎn)P,A2M2與BD交于點(diǎn)N,當(dāng)NP∥AB時(shí),求平移的距離是多少?
【答案】(1)BD=MF,BD⊥MF.理由見(jiàn)解析;
(2)β的度數(shù)為60°或15°;
(3)平移的距離是(6﹣2)cm.
【解析】
試題(1)有兩張完全重合的矩形紙片,小亮同學(xué)將其中一張繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到矩形AMEF(如圖1),得BD=MF,△BAD≌△MAF,推出BD=MF,∠ADB=∠AFM=30°,進(jìn)而可得∠DNM的大。
(2)根據(jù)旋轉(zhuǎn)的性質(zhì)得出結(jié)論.
(3)求平移的距離是A2A的長(zhǎng)度.在矩形PNA2A中,A2A=PN,只要求出PN的長(zhǎng)度就行.用△DPN∽△DAB得出:,解得A2A的大。
試題解析:(1)BD=MF,BD⊥MF.
延長(zhǎng)FM交BD于點(diǎn)N,
由題意得:△BAD≌△MAF.
∴BD=MF,∠ADB=∠AFM.
又∵∠DMN=∠AMF,
∴∠ADB+∠DMN=∠AFM+∠AMF=90°,
∴∠DNM=90°,
∴BD⊥MF;
(2)當(dāng)AK=FK時(shí),∠KAF=∠F=30°,
則∠BAB1=180°﹣∠B1AD1﹣∠KAF=180°﹣90°﹣30°=60°,
即β=60°;
②當(dāng)AF=FK時(shí),∠FAK==75°,
∴∠BAB1=90°﹣∠FAK=15°,
即β=15°;
∴β的度數(shù)為60°或15°;
(3)由題意得矩形PNA2A.設(shè)A2A=x,則PN=x,
在Rt△A2M2F2中,∵F2M2=FM=8,
∴A2M2=4,A2F2=4,∴AF2=4﹣x.
∵∠PAF2=90°,∠PF2A=30°,
∴AP=AF2tan30°=4﹣x.
∴PD=AD﹣AP=4﹣4+x.
∵NP∥AB,
∴∠DNP=∠B.
∵∠D=∠D,
∴△DPN∽△DAB.
∴.
∴,
解得x=6﹣2.
即A2A=6﹣2.
答:平移的距離是(6﹣2)cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,若點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)相等,則稱點(diǎn)P為等值點(diǎn).例如點(diǎn)
(1,1),(-2,-2),(,),…,都是等值點(diǎn).已知二次函數(shù)的
圖象上有且只有一個(gè)等值點(diǎn) ,且當(dāng)m≤x≤3時(shí),函數(shù) 的最小值為-9,最大值為-1,則m的取值范圍是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)E是邊AC上一點(diǎn),線段BE垂直于∠BAC的平分線于點(diǎn)D,點(diǎn)M為邊BC的中點(diǎn),連接DM.
(1)求證: DM=CE;
(2)若AD=6,BD=8,DM=2,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有6個(gè)質(zhì)地和大小均相同的球,每個(gè)球只標(biāo)有一個(gè)數(shù)字,將標(biāo)有3,4,5的三個(gè)球放入甲箱中,標(biāo)有4,5,6的三個(gè)球放入乙箱中.
(1)小宇從甲箱中隨機(jī)模出一個(gè)球,求“摸出標(biāo)有數(shù)字是3的球”的概率;
(2)小宇從甲箱中、小靜從乙箱中各自隨機(jī)摸出一個(gè)球,若小宇所摸球上的數(shù)字比小靜所摸球上的數(shù)字大1,則稱小宇“略勝一籌”.請(qǐng)你用列表法(或畫樹狀圖)求小宇“略勝一籌”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與軸、軸分別交于,兩點(diǎn),是的中點(diǎn),是上一點(diǎn),四邊形是菱形,則的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形、、、…按如圖所示的方式放置.點(diǎn)、、、…和點(diǎn)、、、…分別在直線和軸上,則點(diǎn)的坐標(biāo)是__________.(為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準(zhǔn)備在一個(gè)廣場(chǎng)上種植甲、乙兩種花卉.經(jīng)市場(chǎng)調(diào)查,甲種花卉的種植費(fèi)用(元)與種植面積之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費(fèi)用為每平方米100元.
(1)直接寫出當(dāng)和時(shí),與的函數(shù)關(guān)系式;
(2)廣場(chǎng)上甲、乙兩種花卉的種植面積共,若甲種花卉的種植面積不少于,且不超過(guò)乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植費(fèi)用最少?最少總費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方體的長(zhǎng)為15,寬為10,高為20,點(diǎn)B離點(diǎn)C的距離為5,一只螞蟻如果要沿著長(zhǎng)方體的表面從點(diǎn)A爬到點(diǎn)B,需要爬行的最短距離是__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AD=8,AB=4,將此矩形折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EF,連接BE、DF,以B為原點(diǎn)建立平面直角坐標(biāo)系,使BC、BA邊分別在x軸和y軸的正半軸上.
(1)試判斷四邊形BFDE的形狀,并說(shuō)明理由;
(2)求直線EF的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com