【題目】如圖,菱形ABCD的周長為16,若 ,EAB的中點,則點E的坐標(biāo)為

【答案】
【解析】解:如圖所示,過E作EM⊥AC,

已知四邊形ABCD是菱形,且周長為16,∠BAD=60°,根據(jù)菱形的性質(zhì)可得AB=CD-BC=AD=4,AC⊥DB,∠BAO= ∠BAD=30°,又因E是AB的中點,根據(jù)直角三角形中,斜邊的中線等于斜邊的一半可得EO=EA=EB= AB=2,根據(jù)等腰三角形的性質(zhì)可得∠BAO=∠EOA=30°,由直角三角形中,30°的銳角所對的直角邊等于斜邊的一半可得EM= OE=1,在Rt△OME中,由勾股定理可得OM= ,所以點E的坐標(biāo)為( ,1),
故選 .
【考點精析】掌握勾股定理的概念和菱形的性質(zhì)是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將正方形 置于平面直角坐標(biāo)系中,其中 邊在 軸上,其余各邊均與坐標(biāo)軸平行.直線 沿 軸的負(fù)方向以每秒1個單位的速度平移,在平移的過程中,該直線被正方形 的邊所截得的線段長為 ,平移的時間為 (秒), 的函數(shù)圖象如圖2所示,則圖1中的點 的坐標(biāo)為 , 圖2中 的值為.

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形 中, , ,點 邊上一點,過點 ,交射線 于點 ,交射線 于點

(1)如圖1,若 ,則 度;
(2)當(dāng)以 , 為頂點的三角形是等邊三角形時,依題意在圖2中補全圖形并求 的長;
(3)過點 交射線 于點 ,請?zhí)骄浚寒?dāng) 為何值時,以 , , 為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A的坐標(biāo)為(﹣8,0),點P的坐標(biāo)為(-,0),直線y=x+b過點A,交y軸于點B,以點P為圓心,以PA為半徑的圓交x軸于點C.

(1)判斷點B是否在⊙P上?說明理由.

(2)求過A、B、C三點的拋物線的解析式;并求拋物線與⊙P另外一個交點為D的坐標(biāo).

(3)⊙P上是否存在一點Q,使以A、P、B、Q為頂點的四邊形是菱形?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)如圖①,∠AOB=60°,OD平分∠BOC,OE平分∠AOC,則∠EOD=度;

(2)若∠AOB=90°,其它條件不變,則∠EOD=;
(3)若∠AOB=α,其它條件不變,則∠EOD=
(4)類比應(yīng)用:如圖②,已知線段AB,C是線段AB上任一點,D、E分別是AC、CB的中點,試猜想DE與AB的數(shù)量關(guān)系為 , 并寫出求解過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“綠水青山就是金山銀山”,為了山更綠、水更清,某區(qū)大力實施生態(tài)修復(fù)工程,發(fā)展林業(yè)產(chǎn)業(yè),確保到2021年實現(xiàn)全區(qū)森林覆蓋率達(dá)到72.6%的目標(biāo).已知該區(qū)2019年全區(qū)森林覆蓋率為60%,設(shè)從2019年起該區(qū)森林覆蓋率年平均增長率為x,則x_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、c是△ABC的三邊長,且方程a(1+x2)+2bx﹣c(1﹣x2)=0的兩根相等,則△ABC為( 。

A. 等腰三角形 B. 直角三角形 C. 等邊三角形 D. 任意三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程 有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)當(dāng)m為正整數(shù)時,求方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCO中,O為坐標(biāo)原點,Ay軸上,Cx軸上,B的坐標(biāo)為(8,6),P是線段BC上動點,點D是直線y=2x﹣6上第一象限的點,若APD是等腰直角三角形,則點D的坐標(biāo)為_____________。

查看答案和解析>>

同步練習(xí)冊答案