【題目】如圖,在矩形ABCD中,AB2,BC4,對角線ACBD交于點(diǎn)O,點(diǎn)EBC邊上,DEAC交于點(diǎn)F,∠CDE=∠CBD

求:(1CE的長;(2EF的長.

【答案】1CE1;(2EF

【解析】

1)由在矩形ABCD中,∠EDC=ADB,易證得△CDE∽△CBD,然后由相似三角形的對應(yīng)邊成比例,求得答案;

2)首先求得△CDE的面積,然后證得△ADF∽△CEF,即可得:EFDE=15,根據(jù)勾股定理得到DE,于是得到結(jié)論.

解:(1)∵四邊形ABCD是矩形,AB2,BC4,

ADBC,CDAB2

∴∠ADB=∠CBD

∵∠EDC=∠ADB,

∴∠EDC=∠CBD

∵∠ECD=∠DCB,

∴△CDE∽△CBD,

CECDCDCB,

CE224,

解得:CE1

2)∵ADBC,

∴△ADF∽△CEF,

DFEFADCE41,

EFDE15,

∵∠DCB90°,

DE,

EF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:AD為△ABC的中線,過B、C兩點(diǎn)分別作AD所在直線的垂線段BECF,E、F為垂足,過點(diǎn)EEGABBC于點(diǎn)H,連結(jié)HF并延長交AB于點(diǎn)P。

1)求證:DE=DF

2)若;①求:的值;②求證:四邊形HGAP為平行四邊形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為改善教學(xué)條件,學(xué)校準(zhǔn)備對現(xiàn)有多媒體設(shè)備進(jìn)行升級改造,已知購買3個(gè)鍵盤和1個(gè)鼠標(biāo)需要190元;購買2個(gè)鍵盤和3個(gè)鼠標(biāo)需要220元;

1)求鍵盤和鼠標(biāo)的單價(jià)各是多少元?

2)經(jīng)過與經(jīng)銷商洽談,鍵盤打八折,鼠標(biāo)打八五折.若學(xué)校計(jì)劃購買鍵盤和鼠標(biāo)共50件,且總費(fèi)用不超過1820元,則最多可購買鍵盤多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】速度分別為100km/hakm/h0a100)的兩車分別從相距s千米的兩地同時(shí)出發(fā),沿同一方向勻速前行.行駛一段時(shí)間后,其中一車按原速度原路返回,直到與另一車相遇時(shí)兩車停止.在此過程中,兩車之間的距離ykm)與行駛時(shí)間th)之間的函數(shù)關(guān)系如圖所示.下列說法:①a60;②b2;③cb+;④若s60,則b.其中說法正確的是( 。

A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)ykx+bk≠0)的圖象與反比例函數(shù)yx>0,m≠0)的圖象交于點(diǎn)C,與x軸、y軸分別交于點(diǎn)D、B,已知OB=3,點(diǎn)C的橫坐標(biāo)為4,cos∠0BD

(1)求一次函數(shù)及反比例函數(shù)的表達(dá)式;

(2)將一次函數(shù)圖象向下平移,使其經(jīng)過原點(diǎn)O,與反比例函數(shù)圖象在第四象限內(nèi)的交點(diǎn)為A,連接AC,求四邊形OACB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙C的直徑,MD兩點(diǎn)在AB的延長線上,E是⊙C上的點(diǎn),且DE2DB· DA.延長AEF,使AEEF,設(shè)BF10,cos∠BED=.

(1)求證:△DEB∽△DAE

(2)DA,DE的長;

(3)若點(diǎn)FB、E、M三點(diǎn)確定的圓上,求MD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有AB兩個(gè)轉(zhuǎn)盤,其中轉(zhuǎn)盤A被分成4等份,轉(zhuǎn)盤B被分成3等份,并在每一份內(nèi)標(biāo)上數(shù)字.現(xiàn)甲、乙兩人同時(shí)各轉(zhuǎn)動其中一個(gè)轉(zhuǎn)盤,轉(zhuǎn)盤停止后(當(dāng)指針指在邊界線上時(shí)視為無效,重轉(zhuǎn)),若將A轉(zhuǎn)盤指針指向的數(shù)字記為xB轉(zhuǎn)盤指針指向的數(shù)字記為y,從而確定點(diǎn)P的坐標(biāo)為Pxy).

1)請用列表或畫樹狀圖的方法寫出所有可能得到的點(diǎn)P的坐標(biāo);

2)計(jì)算點(diǎn)P在函數(shù)y=圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市智慧閱讀活動正如火如茶地進(jìn)行.某班學(xué)習(xí)委員為了解11月份全班同學(xué)課外閱讀的情況,調(diào)查了全班同學(xué)11月份讀書的冊數(shù),并根據(jù)調(diào)查結(jié)果繪制了如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖:

1)扇形統(tǒng)計(jì)圖中“3冊”部分所對應(yīng)的圓心角的度數(shù)是 ,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)該班的學(xué)習(xí)委員11月份的讀書冊數(shù)為4冊,若該班的班主任從11月份讀書4冊的學(xué)生中隨機(jī)抽取兩名同學(xué)參加學(xué)校舉行的知識競賽,請用列表法或畫樹狀圖求恰好有一名同學(xué)是學(xué)習(xí)委員的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果三角形的兩個(gè)內(nèi)角αβ滿足2α+β=90°,那么我們稱這樣的三角形為準(zhǔn)互余三角形”.

(1)若ABC準(zhǔn)互余三角形”,C>90°,A=60°,則∠B=   °;

(2)如圖①,在RtABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明ABD準(zhǔn)互余三角形.試問在邊BC上是否存在點(diǎn)E(異于點(diǎn)D),使得ABE也是準(zhǔn)互余三角形?若存在,請求出BE的長;若不存在,請說明理由.

(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BDCD,ABD=2BCD,且ABC準(zhǔn)互余三角形,求對角線AC的長.

查看答案和解析>>

同步練習(xí)冊答案