【題目】平面直角坐標系中,已知點P(m﹣1,n2),Q(m,n﹣1),其中m<0,則下列函數(shù)的圖象可能同時經(jīng)過P,Q兩點的是( )
A.y=2x+bB.y=﹣x2+2x+c
C.y=ax+2 (a>0)D.y=ax2﹣2ax+c(a>0)
【答案】D
【解析】
用先判斷n2與n﹣1和m﹣1與m的大小,從而判斷P(m﹣1,n2),Q(m,n﹣1)的增減關(guān)系,再依次判斷即可.
解:∵n2﹣(n﹣1)=(n﹣)2+>0,
∴n2>n﹣1,
∵m﹣1<m,
∴當m<0時,y隨x的增大而減小,
A、y=2x+b中,y隨x的增大而增大,故A不可能;
B、y=﹣x2+2x+c中,開口向下,對稱軸為直線x=﹣=1,
∴當x<0時,y隨x的增大而增大,故B不可能;
C、y=ax+2 中,a>0,y隨x的增大而增大,故C不可能;
D、y=ax2﹣2ax+c(a>0)中,開口向上,對稱軸為直線x=﹣=1,
∴當x<0時,y隨x的增大而減小,故D有可能,
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】好山好水好江山,石拱橋在江山處處可見,小明要幫忙船夫計算一艘貨船是否能夠安全通過一座圓弧形的拱橋,現(xiàn)測得橋下水面寬度16m時,拱頂高出水平 面4m,貨船寬12m,船艙頂部為矩形并高出水面3m。
(1)請你幫助小明求此圓弧形拱橋的半徑;
(2)小明在解決這個問題時遇到困難,請你判斷一下,此貨船能順利通過這座拱橋嗎?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,規(guī)定:拋物線的伴隨直線為.例如:拋物線的伴隨直線為,即y=2x﹣1.
(1)在上面規(guī)定下,拋物線的頂點坐標為 ,伴隨直線為 ,拋物線與其伴隨直線的交點坐標為 和 ;
(2)如圖,頂點在第一象限的拋物線與其伴隨直線相交于點A,B(點A在點B的左側(cè)),與x軸交于點C,D.
①若∠CAB=90°,求m的值;
②如果點P(x,y)是直線BC上方拋物線上的一個動點,△PBC的面積記為S,當S取得最大值時,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在AB的延長線上,AD平分∠CAE交⊙O于點D,且AE⊥CD,垂足為點E.
(1)求證:直線CE是⊙O的切線.
(2)若BC=3,CD=3,求弦AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一張正三角形的紙片的邊長為2cm,D、E、F分別是邊AB、BC、CA(含端點)上的點,設(shè)BD=CE=AF=x(cm),△DEF的面積為y(cm2).
(1)求y關(guān)于x的函數(shù)表達式和自變量的取值范圍;
(2)求△DEF的面積y的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,四邊形ABCD內(nèi)接于⊙O,AB=AC,過點A作AE∥BD交CD的延長線于點E.
(1)求證:AE=DE;
(2)若∠BCD﹣∠CBD=60°,求∠ABD的度數(shù);
(3)在(2)的條件下,若BD=21,CD=9,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=,BC=2.現(xiàn)分別任作△ABC的內(nèi)接矩形P1Q1M1N1,P2Q2M2N2,P3Q3M3N3,設(shè)這三個內(nèi)接矩形的周長分別為c1、c2,c3,則c1+c2+c3的值是( 。
A. 6B. C. 12D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O 為原點,點 A(4,0),點 B(0,3),把△ABO 繞點 B 逆時針旋轉(zhuǎn),得△A′BO′,點 A、O 旋轉(zhuǎn)后的對應(yīng)點為 A′、O′,記旋轉(zhuǎn)角為ɑ.
(1)如圖 1,若ɑ=90°,求 AA′的長;
(2)如圖 2,若ɑ=120°,求點 O′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子中裝有三個完全相同的小球,分別標有數(shù)字2,3,4.從袋子中隨機取出一個小球,用小球上的數(shù)字作為十位數(shù)字,然后放回,再取出一個小球,用小球上的數(shù)字作為個位數(shù)字,這樣組成一個兩位數(shù),請用列表法或畫樹狀圖的方法完成下列問題.
(1)按這種方法組成兩位數(shù)45是_____事件,填(“不可能”、“隨機”、“必然”)
(2)組成的兩位數(shù)能被3整除的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com