【題目】2016年共享單車橫空出世,更好地解決了人們“最后一公里”出行難的問題,截止到2016年底,已知“摩拜單車”投放數(shù)量有50萬輛,“ofo共享單車”的投放數(shù)量是“摩拜單車”投放數(shù)量的1.6倍,“ofo共享單車”注冊用戶量比“摩拜單車”的注冊用戶量多210萬人,據(jù)統(tǒng)計(jì)使用一輛“ofo共享單車”的平均人數(shù)比使用一輛“摩拜單車”的平均人數(shù)少3人,假設(shè)注冊這兩種單車的用戶都在使用共享單車,求2016年“ofo共享單車”和“摩拜單車”的注冊用戶量各多少人?
【答案】“摩拜單車”的注冊用戶量約為750萬人,“ofo共享單車”注冊用戶量約為960萬人.
【解析】設(shè)“摩拜單車”注冊用戶量為x萬人,則“ofo共享單車”注冊用戶量為(x+210)萬人,根據(jù)使用一輛“ofo共享單車”的平均人數(shù)比使用一輛“摩拜單車”的平均人數(shù)少3人,列出方程,求解即可.
設(shè)“摩拜單車”注冊用戶量為x萬人,則“ofo共享單車”注冊用戶量為(x+210)萬人,
由題意可知“ofo共享單車”的投放數(shù)量是50×1.6=80(萬).
根據(jù)題意可列方程-=3,解得x=750,
x+210=960,
即“摩拜單車”的注冊用戶量約為750萬人,“ofo共享單車”注冊用戶量約為960萬人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙、丙三種糖果混合而成的什錦糖100千克,其中各種糖果的單價和千克數(shù)如表所示,商家用加權(quán)平均數(shù)來確定什錦糖的單價.
甲種糖果 | 乙種糖果 | 丙種糖果 | |
單價(元/千克) | 20 | 25 | 30 |
千克數(shù) | 40 | 40 | 20 |
(1)求該什錦糖的單價.
(2)為了使什錦糖的單價每千克至少降低2元,商家計(jì)劃在什錦糖中加入甲、丙兩種糖果共100千克,問其中最多可加入丙種糖果多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)如圖,直線AB,CD相交于點(diǎn)O,OE⊥CD于點(diǎn)O,OD平分∠BOF,∠BOE=50,
求∠AOC,∠AOF,∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長是4,點(diǎn)P是AD邊的中點(diǎn),點(diǎn)E是正方形邊上的一點(diǎn).若△PBE是等腰三角形,則腰長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點(diǎn)M、N分別是斜邊AB、DE的中點(diǎn),點(diǎn)P為AD的中點(diǎn),連接AE、BD.
(1)猜想PM與PN的數(shù)量關(guān)系及位置關(guān)系,請直接寫出結(jié)論;
(2)現(xiàn)將圖①中的△CDE繞著點(diǎn)C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖②,AE與MP、BD分別交于點(diǎn)G、H.請判斷(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;
(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):
探究一:我們知道,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.那么,三角形的一個內(nèi)角與它不相鄰的兩個外角的和之間存在何種數(shù)量關(guān)系呢?
已知:如圖1,∠FDC與∠ECD分別為△ADC的兩個外角,試探究∠A與∠FDC+∠ECD的數(shù)量關(guān)系為:____________________(直接寫出結(jié)果).
探究二:三角形的一個內(nèi)角與另兩個內(nèi)角的平分線所夾的鈍角之間有何種關(guān)系?
已知:如圖2,在△ADC中,DP,CP分別平分∠ADC和∠ACD,試探究∠P與∠A的數(shù)量關(guān)系為:____________________(直接寫出結(jié)果).
探究三:若將△ADC改為任意四邊形ABCD呢?
已知:如圖3,在四邊形ABCD中,DP,CP分別平分∠ADC和∠BCD,試?yán)蒙鲜鼋Y(jié)論探究∠P與∠A+∠B的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
我們知道的幾何意義是在數(shù)軸上數(shù)對應(yīng)的點(diǎn)與原點(diǎn)的距離,即=,也就是說,表示在數(shù)軸上數(shù)與數(shù)0對應(yīng)的點(diǎn)之間的距離;這個結(jié)論可以推廣為表示在數(shù)軸上數(shù)與數(shù)對應(yīng)的點(diǎn)之間的距離;
例1.解方程||=2.因?yàn)樵跀?shù)軸上到原點(diǎn)的距離為2的點(diǎn)對應(yīng)的數(shù)為,所以方程||=2的解為.
例2.解不等式|-1|>2.在數(shù)軸上找出|-1|=2的解(如圖),因?yàn)樵跀?shù)軸上到1對應(yīng)的點(diǎn)的距離等于2的點(diǎn)對應(yīng)的數(shù)為-1或3,所以方程|-1|=2的解為=-1或=3,因此不等式|-1|>2的解集為<-1或>3.
例3.解方程|-1|+|+2|=5.由絕對值的幾何意義知,該方程就是求在數(shù)軸上到1和-2對應(yīng)的點(diǎn)的距離之和等于5的點(diǎn)對應(yīng)的的值.因?yàn)樵跀?shù)軸上1和-2對應(yīng)的點(diǎn)的距離為3(如圖),滿足方程的對應(yīng)的點(diǎn)在1的右邊或-2的左邊.若對應(yīng)的點(diǎn)在1的右邊,可得=2;若對應(yīng)的點(diǎn)在-2的左邊,可得=-3,因此方程|-1|+|+2|=5的解是=2或=-3.
參考閱讀材料,解答下列問題:
(1)方程|+3|=4的解為 ;
(2)解不等式:|-3|≥5;
(3)解不等式:|-3|+|+4|≥9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下列各題:
(1)計(jì)算:-22+|5-8|+24÷(-3)×;
(2)化簡與計(jì)算:
①化簡:3x2-[7x-(4x-3)-2x2];
②先化簡,再求值:x-2+,其中x=-2,y=;
(3)解方程:
①32x-64=16x+32;
②-=2-.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com