【題目】材料1:如圖1,昌平南環(huán)大橋是經(jīng)典的懸索橋,當(dāng)今大跨度橋梁大多采用此種結(jié)構(gòu).此種橋梁各結(jié)構(gòu)的名稱如圖2所示,其建造原理是在兩邊高大的橋塔之間,懸掛著主索,再以相應(yīng)的間隔,從主索上設(shè)置豎直的吊索,與橋面垂直,并連接橋面承接橋面的重量,主索幾何形態(tài)近似符合拋物線.
圖1
圖2
材料2:如圖3,某一同類型懸索橋,兩橋塔AD=BC=10 m,間距AB為32 m,橋面AB水平,主索最低點(diǎn)為點(diǎn)P,點(diǎn)P距離橋面為2 m;
圖3
為了進(jìn)行研究,甲、乙、丙三位同學(xué)分別以不同方式建立了平面直角坐標(biāo)系,如下圖:
甲同學(xué):以DC中點(diǎn)為原點(diǎn),DC所在直線為x軸,建立平面直角坐標(biāo)系;
乙同學(xué):以AB中點(diǎn)為原點(diǎn),AB所在直線為x軸,建立平面直角坐標(biāo)系;
丙同學(xué):以點(diǎn)P為原點(diǎn),平行于AB的直線為x軸,建立平面直角坐標(biāo)系.
(1)請你選用其中一位同學(xué)建立的平面直角坐標(biāo)系,寫出此種情況下點(diǎn)C的坐標(biāo),并求出主索拋物線的表達(dá)式;
(2)距離點(diǎn)P水平距離為4 m和8 m處的吊索共四條需要更換,則四根吊索總長度為多少米?
【答案】(1)甲,C(16,0),主索拋物線的表達(dá)式為;(2)四根吊索的總長度為13m;
【解析】
(1)利用待定系數(shù)法求取解析式即可;
(2)利用拋物線對稱性進(jìn)一步求解即可.
(1)甲,C(16,0)
解:設(shè)拋物線的表達(dá)式為
由題意可知,C點(diǎn)坐標(biāo)為(16,0),P點(diǎn)坐標(biāo)為(0,-8)
將C(16,0),P(0,-8)代入,得
解得.
∴主索拋物線的表達(dá)式為
(2)x=4時,,此時吊索的長度為m.
由拋物線的對稱性可得,x=-4時,此時吊索的長度也為m.
同理,x=8時,,此時吊索的長度為m
x=-8時,此時吊索的長度也為4m.
∴四根吊索的總長度為13m
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,為的中點(diǎn),的垂直平分線分別交,及的延長線于點(diǎn),,,連接,,,連接并延長交于點(diǎn),則下列結(jié)論中:①;②;③;④;⑤ ;⑥;⑦.正確的結(jié)論的個數(shù)為( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生自主學(xué)習(xí)的具體情況,童老師隨機(jī)對部分學(xué)生進(jìn)行了跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差,繪制成了以下兩幅不完整的統(tǒng)計圖(每位學(xué)生只屬于一類),請你解答下列問題:
(1) 本次調(diào)查的樣本容量為__________
(2) 將條形統(tǒng)計圖補(bǔ)充完整
(3) D類所占扇形角的度數(shù)為__________
(4) 學(xué)校共有2000名學(xué)生,其中自主學(xué)習(xí)情況特別好的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點(diǎn)E是AB邊上一動點(diǎn),過點(diǎn)E作DE⊥AB交AC邊于點(diǎn)D,將∠A沿直線DE翻折,點(diǎn)A落在線段AB上的F處,連接FC,當(dāng)△BCF為等腰三角形時,AE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個結(jié)論:
①點(diǎn)C的坐標(biāo)為(0,m);
②當(dāng)m=0時,△ABD是等腰直角三角形;
③若a=-1,則b=4;
④拋物線上有兩點(diǎn)P(,)和Q(,),若<1<,且+>2,則>.
其中結(jié)論正確的序號是( )
A.①②B.①②③C.①②④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系中,已知點(diǎn)A(-2,0)和點(diǎn)B(3,0),線段AB和線段AB外的一點(diǎn)P,給出如下定義:若45°≤∠APB≤90°時,則稱點(diǎn)P為線段AB的可視點(diǎn),且當(dāng)PA=PB時,稱點(diǎn)P為線段AB的正可視點(diǎn).
圖1 備用圖
(1) ①如圖1,在點(diǎn)P1(3,6),P2(-2,-5),P3(2,2)中,線段AB的可視點(diǎn)是 ;
②若點(diǎn)P在y軸正半軸上,寫出一個滿足條件的點(diǎn)P的坐標(biāo):__________.
(2)在直線y=x+b上存在線段AB的可視點(diǎn),求b的取值范圍;
(3)在直線y=-x+m上存在線段AB的正可視點(diǎn),直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的圖象的對稱軸為直線.
(1)求的值;
(2)將函數(shù)的圖象向右平移2個單位,得到新的函數(shù)圖象.
①直接寫出函數(shù)圖象的表達(dá)式;
②設(shè)直線與軸交于點(diǎn)A,與y軸交于點(diǎn)B,當(dāng)線段AB與圖象只有一個公共點(diǎn)時,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(7,8)、C(0,6),AB⊥x軸,垂足為點(diǎn)B,點(diǎn)D在線段OB上,DE∥AC,交AB于點(diǎn)E,EF∥CD,交AC于點(diǎn)F.
(1)求經(jīng)過A、C兩點(diǎn)的直線的表達(dá)式;
(2)設(shè)OD=t,BE=s,求s與t的函數(shù)關(guān)系式;
(3)是否存在點(diǎn)D,使四邊形CDEF為矩形?若存在,請直接寫出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)有一塊長為30m,寬為24m的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com