【題目】求證:角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.

要求:(1)尺規(guī)作圖:作∠AOB的角平分線,并在該角平分線上取點(diǎn)P,作PMOA于點(diǎn)M,PNOB于點(diǎn)N(不寫作法,保留作圖痕跡);

(2)以下是結(jié)合要證的命題和圖形寫出的已知,求證,請(qǐng)你完成證明過程.

已知:如圖,OP平分∠AOB,PMOA于點(diǎn)M,PNOB于點(diǎn)N.

求證:PM=PN

證明:

【答案】詳見解析

【解析】

1)根據(jù)角平分線的作法得出即可;

(2)運(yùn)用角角邊定理先證△OPM≌△OPN,再根據(jù)全等三角形的性質(zhì)得到PM=PN.

(1)如圖所示:

證明:∵OP平分∠AOB,

∴∠AOP=BOP

PMOA,PNOB

∴∠OMP=ONP=90°

OPMOPN中,

∴△OPM≌△OPNAAS).

PM=PN

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價(jià)是200/臺(tái).經(jīng)過市場銷售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于300/臺(tái),代理銷售商每月要完成不低于450臺(tái)的銷售任務(wù).

1)試確定月銷售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;

2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)模仿二維碼的方式為學(xué)校設(shè)計(jì)了一個(gè)身份識(shí)別圖案系統(tǒng):在的正方形網(wǎng)格中,黑色正方形表示數(shù)字1,白色正方形表示數(shù)字0.如圖1是某個(gè)學(xué)生的身份識(shí)別圖案.約定如下:把第i行,第j列表示的數(shù)字記為(其中i,j=1,23,4),如圖1中第2行第1列的數(shù)字=0;對(duì)第i行使用公式進(jìn)行計(jì)算,所得結(jié)果表示所在年級(jí),表示所在班級(jí),表示學(xué)號(hào)的十位數(shù)字,表示學(xué)號(hào)的個(gè)位數(shù)字.如圖1中,第二行,說明這個(gè)學(xué)生在5.

1)圖1代表的學(xué)生所在年級(jí)是______年級(jí),他的學(xué)號(hào)是_________

2)請(qǐng)仿照?qǐng)D1,在圖2中畫出八年級(jí)4班學(xué)號(hào)是36的同學(xué)的身份識(shí)別圖案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某面粉加工廠加工的面粉,用每袋可裝10g面粉的袋子裝了200袋經(jīng)過稱重,質(zhì)量超過標(biāo)準(zhǔn)質(zhì)量10kg的用正數(shù)表示,質(zhì)量低于標(biāo)準(zhǔn)質(zhì)量10kg的用負(fù)數(shù)表示,結(jié)果記錄如下

與標(biāo)準(zhǔn)質(zhì)量的偏差(kg)

1.5

1

0.5

0

0.5

1

2

袋數(shù)()

40

30

10

25

40

20

35

(1)求這批面粉的總質(zhì)量;

(2)如果100kg小麥加工80kg面粉,那么這批面粉是由多少千克小麥加工的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校計(jì)劃購買若干臺(tái)電腦,現(xiàn)從兩家商場了解到同一種型號(hào)的電腦報(bào)價(jià)均為6000元,并且多買都有一定的優(yōu)惠.各商場的優(yōu)惠條件如下表所示:

商場

優(yōu)惠條件

甲商場

第一臺(tái)按原價(jià)收費(fèi),其余的每臺(tái)優(yōu)惠25%

乙商場

每臺(tái)優(yōu)惠20%

(1)設(shè)學(xué)校購買臺(tái)電腦,選擇甲商場時(shí),所需費(fèi)用為元,選擇乙商場時(shí),所需費(fèi)用為元,請(qǐng)分別求出,之間的關(guān)系式.

(2)什么情況下,兩家商場的收費(fèi)相同?什么情況下,到甲商場購買更優(yōu)惠?什么情況下,到乙商場購買更優(yōu)惠?

(3)現(xiàn)在因?yàn)榧毙,?jì)劃從甲乙兩商場一共買入10臺(tái)電腦,已知甲商場的運(yùn)費(fèi)為每臺(tái)50元,乙商場的運(yùn)費(fèi)為每臺(tái)60元,設(shè)總運(yùn)費(fèi)為元,從甲商場購買臺(tái)電腦,在甲商場的庫存只有4臺(tái)的情況下,怎樣購買,總運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過A點(diǎn)作BC的平行線,交CE的延長線于點(diǎn)F,且AF=BD,連接BF.

(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把兩個(gè)全等的等腰直角三角板ABCEFG(其直角邊長均為4)疊放在一起(如圖1),且使三角板EFG的直角頂點(diǎn)G與三角板ABC的斜邊中點(diǎn)O重合,現(xiàn)將三角板EFGO點(diǎn)順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角滿足條件四邊形CHGK是旋轉(zhuǎn)過程中兩三角板的重疊部分(如圖2).

(1)在上述旋轉(zhuǎn)過程中,BHCK有怎樣的數(shù)量關(guān)系?證明你的結(jié)論;

(2)在上述旋轉(zhuǎn)過程中,兩個(gè)直角三角形的重疊部分面積是否會(huì)發(fā)生改變?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形中,對(duì)角線,的中點(diǎn),點(diǎn)分別是上動(dòng)點(diǎn),連接,則的最小值是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣4,4),點(diǎn)B的坐標(biāo)為(0,2).

1)求直線AB的解析式;

2)如圖,以點(diǎn)A為直角頂點(diǎn)作∠CAD90°,射線ACx軸于點(diǎn)C,射線ADy軸于點(diǎn)D.當(dāng)∠CAD繞著點(diǎn)A旋轉(zhuǎn),且點(diǎn)Cx軸的負(fù)半軸上,點(diǎn)Dy軸的負(fù)半軸上時(shí),OCOD的值是否發(fā)生變化?若不變,求出它的值;若變化,求出它的變化范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案