【題目】一輛汽車在某次行駛過程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數(shù)關系,其部分圖象如圖所示.

1)求y關于x的函數(shù)關系式;(不需要寫出自變量x的取值范圍)

2)已知當油箱中的剩余油量為8升時,該汽車會開始提示加油,求提示時汽車行駛的路程是多少千米.

【答案】1y=﹣0.1x+60;(2520千米.

【解析】

1)根據(jù)函數(shù)圖象中點的坐標利用待定系數(shù)法求出一次函數(shù)解析式;

2)根據(jù)一次函數(shù)圖象上點的坐標特征即可求出剩余油量為8升時行駛的路程,此題得解.

解:(1)設該一次函數(shù)解析式為ykx+b,

將(150,45)、(0,60)代入ykx+b中,

,

解得:,

∴該一次函數(shù)解析式為y=﹣0.1x+60

2)當y=﹣0.1x+608時,x520,即行駛520千米時,油箱中的剩余油量為8升.

答:提示時汽車行駛的路程是520千米

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,AB6,PAC邊上一動點,由AC運動(與AC不重合),QCB延長線上一動點,與點P同時以相同的速度由BCB延長線方向運動(Q不與B重合),過PPEABE,連接PQABD

1)證明:在運動過程中,點D是線段PQ的中點;

2)當∠BQD30°時,求AP的長;

3)在運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:在平面直角坐標系中,對于任意兩點A a,b),Bc,d),若點Tx,y)滿足xy,那么稱點T是點AB的融合點.例如:M(﹣1,8),N4,﹣2),則點T1,2)是點MN的融合點.如圖,已知點D3,0),點E是直線yx+2上任意一點,點T xy)是點DE的融合點.

1)若點E的縱坐標是6,則點T的坐標為   ;

2)求點T xy)的縱坐標y與橫坐標x的函數(shù)關系式:

3)若直線ETx軸于點H,當DTH為直角三角形時,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】黃金1玉米種子的價格為5/kg.如果一次購買5kg以上的種子,超過5kg部分的種子價格打8折.

1)購買3kg種子,需付款   元,購買6kg種子,需付款   元.

2)設購買種子x kg,付款金額為y元,寫出yx之間的函數(shù)解析式.

3)張大爺要購買種子5千克,李大爺要購買種子4千克,怎樣購買讓他們花錢最少?他們各應付款多少元?(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明從家出發(fā),外出散步,到一個公共閱報欄前看了一會報后,繼續(xù)散步了一段時間,然后回家,如圖描述了小明在散步過程匯總離家的距離s(米)與散步所用時間t(分)之間的函數(shù)關系,根據(jù)圖象,下列信息錯誤的是( )

A小明看報用時8分鐘

B公共閱報欄距小明家200米

C小明離家最遠的距離為400米

D小明從出發(fā)到回家共用時16分鐘

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°0.2588,sin75°0.9659,tan75°3.732,1.732,1.414)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC 中,ABBC,ABACDE AB 的垂直平分線,垂足為 D,交 AC E

(1)若∠ABE40°,求∠EBC 的度數(shù);

(2)若△ABC 的周長為 41cm,一邊長為 15cm,求△BCE 的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADABC的中線,E,F分別是ADAD延長線上的點,且DE=DF,連接BFCE,且∠FBD=35°,BDF=75°,下列說法:①BDFCDE;ABDACD面積相等;③BFCE;④∠DEC=70°,其中正確的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點A、C,與AB交于點D.

(1)求拋物線的函數(shù)解析式;

(2)P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,CPQ的面積為S.

①求S關于m的函數(shù)表達式;

②當S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案