【題目】定義:在平面直角坐標(biāo)系中,對(duì)于任意兩點(diǎn)A (a,b),B(c,d),若點(diǎn)T(x,y)滿足x=,y=,那么稱(chēng)點(diǎn)T是點(diǎn)A和B的融合點(diǎn).例如:M(﹣1,8),N(4,﹣2),則點(diǎn)T(1,2)是點(diǎn)M和N的融合點(diǎn).如圖,已知點(diǎn)D(3,0),點(diǎn)E是直線y=x+2上任意一點(diǎn),點(diǎn)T (x,y)是點(diǎn)D和E的融合點(diǎn).
(1)若點(diǎn)E的縱坐標(biāo)是6,則點(diǎn)T的坐標(biāo)為 ;
(2)求點(diǎn)T (x,y)的縱坐標(biāo)y與橫坐標(biāo)x的函數(shù)關(guān)系式:
(3)若直線ET交x軸于點(diǎn)H,當(dāng)△DTH為直角三角形時(shí),求點(diǎn)E的坐標(biāo).
【答案】(1)(,2);(2)y=x﹣;(3)E的坐標(biāo)為(,)或(6,8)
【解析】
(1)把點(diǎn)E的縱坐標(biāo)代入直線解析式,求出橫坐標(biāo),得到點(diǎn)E的坐標(biāo),根據(jù)融合點(diǎn)的定義求求解即可;
(2)設(shè)點(diǎn)E的坐標(biāo)為(a,a+2),根據(jù)融合點(diǎn)的定義用a表示出x、y,整理得到答案;
(3)分∠THD=90°、∠TDH=90°、∠DTH=90°三種情況,根據(jù)融合點(diǎn)的定義解答.
解:(1)∵點(diǎn)E是直線y=x+2上一點(diǎn),點(diǎn)E的縱坐標(biāo)是6,
∴x+2=6,
解得,x=4,
∴點(diǎn)E的坐標(biāo)是(4,6),
∵點(diǎn)T (x,y)是點(diǎn)D和E的融合點(diǎn),
∴x==,y==2,
∴點(diǎn)T的坐標(biāo)為(,2),
故答案為:(,2);
(2)設(shè)點(diǎn)E的坐標(biāo)為(a,a+2),
∵點(diǎn)T (x,y)是點(diǎn)D和E的融合點(diǎn),
∴x=,y=,
解得,a=3x﹣3,a=3y﹣2,
∴3x﹣3=3y﹣2,
整理得,y=x﹣;
(3)設(shè)點(diǎn)E的坐標(biāo)為(a,a+2),
則點(diǎn)T的坐標(biāo)為(,),
當(dāng)∠THD=90°時(shí),點(diǎn)E與點(diǎn)T的橫坐標(biāo)相同,
∴=a,
解得,a=,
此時(shí)點(diǎn)E的坐標(biāo)為(,),
當(dāng)∠TDH=90°時(shí),點(diǎn)T與點(diǎn)D的橫坐標(biāo)相同,
∴=3,
解得,a=6,
此時(shí)點(diǎn)E的坐標(biāo)為(6,8),
當(dāng)∠DTH=90°時(shí),該情況不存在,
綜上所述,當(dāng)△DTH為直角三角形時(shí),點(diǎn)E的坐標(biāo)為(,)或(6,8)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD,CE分別是∠ABC,∠ACB的平分線,且DE∥BC,∠A=36°,則圖中等腰三角形共有_____個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題背景)解方程:x4﹣5x2+4=0.
這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),我們可以借助“換元法”將高次方程“降次”,進(jìn)而解得未知數(shù)的值.
解:設(shè) x2=y,那么 x4=y2,于是原方程可變?yōu)?y2﹣5y+4=0,解得 y1=1,y2=4. 當(dāng) y1=1 時(shí),x2=1,x=±1;當(dāng) y2=4 時(shí),x2=4,x=±2;
原方程有四個(gè)根:x1=1,x2=﹣1,x3=2,x4=﹣2.
(觸類(lèi)旁通)參照例題解方程:(x2+x)2﹣4(x2+x)﹣12=0;
(解決問(wèn)題)已知實(shí)數(shù) x,y 滿足(2x+2y+3)(2x+2y﹣3)=27,求 x+y 的值;
(拓展遷移)分解因式:(x2+4x+3)(x2+4x+5)+1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)、為直線上的兩動(dòng)點(diǎn),,,;
(1)當(dāng)點(diǎn)、重合,即時(shí)(如圖),試求.(用含,,的代數(shù)式表示)
(2)請(qǐng)直接應(yīng)用(1)的結(jié)論解決下面問(wèn)題:當(dāng)、不重合,即,
①如圖這種情況時(shí),試求.(用含,,,的代數(shù)式表示)
②如圖這種情況時(shí),試猜想與、之間有何種數(shù)量關(guān)系?并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長(zhǎng)為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn)若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)A (﹣2,6),與x軸交于點(diǎn)B,與正比例函數(shù)y=3x的圖象交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為1.
(1)求AB的函數(shù)表達(dá)式;
(2)若點(diǎn)D在y軸負(fù)半軸,且滿足S△COD=S△BOC,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)八⑴班、⑵班各選5名同學(xué)參加“愛(ài)我中華”演講比賽,其預(yù)賽成績(jī)(滿分100分)如圖所示:
(1)根據(jù)上圖填寫(xiě)下表:
平均數(shù) | 中位數(shù) | 眾數(shù) | |
八(1)班 | 85 | 85 | |
八(2)班 | 85 | 80 |
(2)根據(jù)兩班成績(jī)的平均數(shù)和中位數(shù),分析哪班成績(jī)較好?
(3)如果每班各選2名同學(xué)參加決賽,你認(rèn)為哪個(gè)班實(shí)力更強(qiáng)些?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛汽車(chē)在某次行駛過(guò)程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數(shù)關(guān)系,其部分圖象如圖所示.
(1)求y關(guān)于x的函數(shù)關(guān)系式;(不需要寫(xiě)出自變量x的取值范圍)
(2)已知當(dāng)油箱中的剩余油量為8升時(shí),該汽車(chē)會(huì)開(kāi)始提示加油,求提示時(shí)汽車(chē)行駛的路程是多少千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAC=90°,E是BC的中點(diǎn),AD∥BC,AE∥DC,EF⊥CD于點(diǎn)F.
(1)求證:四邊形AECD是菱形;
(2)若AB=5,AC=12,求EF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com