【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,延長CB至點F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點E,N,M,連接EO.
(1)已知BD= ,求正方形ABCD的邊長;
(2)猜想線段EM與CN的數(shù)量關系并加以證明.

【答案】
(1)解:∵四邊形ABCD是正方形,

∴△ABD是等腰直角三角形,

∴2AB2=BD2,

∵BD=

∴AB=1,

∴正方形ABCD的邊長為1


(2)解:CN=2EM

理由:∵四邊形ABCD是正方形,

∴AC⊥BD,OA=OC

∵CF=CA,AF是∠ACF的平分線,

∴CE⊥AF,AE=FE

∴EO為△AFC的中位線

∴EO∥BC

∴在Rt△AEN中,OA=OC

∴EO=OC= AC,

∴CM= EM

∵AF平分∠ACF,

∴∠OCM=∠BCN,

∵∠NBC=∠COM=90°,

∴△CBN∽△COM,

,

∴CN= CM,

即CN=2EM


【解析】(1)利用正方形的性質(zhì)和勾股定理計算即可;(2)先判斷出EO為△AFC的中位線,再由EO∥BC得出 ,進而利用直角三角形得出CM= EM,再判斷出△CBN∽△COM得出比例式,進而得出CN= CM,即可得出結(jié)論.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,點D在AB的延長線上.
(1)利用尺規(guī)按下列要求作圖,并在圖中標明相應的字母(保留作圖痕跡,不寫作法). ①作∠CBD的平分線BM;
②作邊BC上的中線AE,并延長AE交BM于點F.
(2)由(1)得:BF與邊AC的位置關系是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=2x2﹣2 x+1與坐標軸的交點個數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A(-4,1),B(-3,3),C(-1,2).

(1)作出△ABC關于y軸對稱的△A′B′C′,并寫出△A′B′C′三個頂點的坐標.

(2)在x軸上畫出點P,使PA+PC最。ú粚懽鞣,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點P、Q分別是邊長為4cm的等邊ABCAB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cms。

⑴連接AQCP交于點M,在點PQ運動的過程中,∠CMQ的大小變化嗎?若變化,則說明理由,若不變,請直接寫出它的度數(shù);

⑵點P、Q在運動過程中,設運動時間為t,當t為何值時,PBQ為直角三角形?

⑶如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠CMQ的大小變化嗎?則說明理由;若不變,請求出它的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點,點C的坐標是(8,4),連接AC,BC.

(1)求過O,A,C三點的拋物線的解析式,并判斷△ABC的形狀;
(2)動點P從點O出發(fā),沿OB以每秒2個單位長度的速度向點B運動;同時,動點Q從點B出發(fā),沿BC以每秒1個單位長度的速度向點C運動.規(guī)定其中一個動點到達端點時,另一個動點也隨之停止運動.設運動時間為t秒,當t為何值時,PA=QA?
(3)在拋物線的對稱軸上,是否存在點M,使以A,B,M為頂點的三角形是等腰三角形?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 Rt△ABC 中,∠C=90°,∠BAC=30°,點 D BC 邊上的點,AB=18,將△ABC 沿直線 AD 翻折,使點 C 落在 AB 邊上的點 E ,若點 P 是直線 AD 上的動點, BP+EP 的最小值是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,花果山上有兩只猴子在一棵樹CD上的點B處,且BC=5m,它們都要到A處吃東西,其中一只猴子甲沿樹爬下走到離樹10m處的池塘A處,另一只猴子乙先爬到樹頂D處后再沿纜繩DA線段滑到A處.已知兩只猴子所經(jīng)過的路程相等,設BDxm

1)請用含有x整式表示線段AD的長為______m;

2)求這棵樹高有多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為6,面積是18,腰AB的垂直平分線EF分別交AC、AB邊于E、F點.若點OBC邊的中點,點M為線段EF上一動點,則BOM周長的最小值為_______

查看答案和解析>>

同步練習冊答案