【題目】如圖所示,扇形OMN的圓心角為45°,正方形A1B1C1A2的邊長(zhǎng)為2,頂點(diǎn)A1,A2在線段OM上,頂點(diǎn)B1在弧MN上,頂點(diǎn)C1在線段ON上,在邊A2C1上取點(diǎn)B2,以A2B2為邊長(zhǎng)繼續(xù)作正方形A2B2C2A3,使得點(diǎn)C2在線段ON上,點(diǎn)A3在線段OM上,……,依次規(guī)律,繼續(xù)作正方形,則A2018M=__________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(a,0),B(0,a),等腰直角三角形ODC的斜邊經(jīng)過(guò)點(diǎn)B,OE⊥AC,交AC于E,若OE=2,則△BOD與△AOE的面積之差為( 。
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(3,1),C(-2,-1).
(1)在圖中作出關(guān)于軸對(duì)稱的.
(2)寫出點(diǎn)的坐標(biāo)(直接寫答案).
A1_____________,B1______________,C1______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x2-4x+2)(x2-4x+6)+4進(jìn)行因式分解的過(guò)程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
= y2+8y+16 (第二步)
=(y+4)2 (第三步)
=(x2-4x+4)2 (第四步)
回答下列問(wèn)題:
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______.
A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)
若不徹底,請(qǐng)直接寫出因式分解的最后結(jié)果_________.
(3)請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC是邊長(zhǎng)3cm的等邊三角形.動(dòng)點(diǎn)P以1cm/s的速度從點(diǎn)A出發(fā),沿線段AB向點(diǎn)B運(yùn)動(dòng).
(1)如圖1,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),那么t= (s)時(shí),△PBC是直角三角形;
(2)如圖2,若另一動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC向點(diǎn)C運(yùn)動(dòng),如果動(dòng)點(diǎn)P、Q都以1cm/s的速度同時(shí)出發(fā).設(shè)運(yùn)動(dòng)時(shí)間為t(s),那么t為何值時(shí),△PBQ是直角三角形?
(3)如圖3,若另一動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿射線BC方向運(yùn)動(dòng).連接PQ交AC于D.如果動(dòng)點(diǎn)P、Q都以1cm/s的速度同時(shí)出發(fā).設(shè)運(yùn)動(dòng)時(shí)間為t(s),那么t為何值時(shí),△DCQ是等腰三角形?
(4)如圖4,若另一動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿射線BC方向運(yùn)動(dòng).連接PQ交AC于D,連接PC.如果動(dòng)點(diǎn)P、Q都以1cm/s的速度同時(shí)出發(fā).請(qǐng)你猜想:在點(diǎn)P、Q的運(yùn)動(dòng)過(guò)程中,△PCD和△QCD的面積有什么關(guān)系?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知 AD 是△ABC 的邊 BC 上的中線.
(1)作出△ABD 的邊 BD 上的高.
(2)若△ABC 的面積為 10,求△ADC 的面積.
(3)若△ABD 的面積為 6,且 BD 邊上的高為 3,求 BC 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. “明天降雨的概率是”表示明天有的時(shí)間降雨
B. “彩票中獎(jiǎng)的概率是”表示買張彩票一定會(huì)中獎(jiǎng)
C. “拋一枚硬幣正面朝上的概率是”表示每拋次就有次出現(xiàn)正面朝上
D. “拋一枚普通的正方體骰子,出現(xiàn)朝正面的數(shù)為奇數(shù)的概率是”表示如果這個(gè)骰子拋很多很多次,那么平均每次就有次出現(xiàn)朝正面的數(shù)為奇數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】符合下列條件之一的四邊形不一定是菱形的是( )
A. 四條邊相等
B. 兩組鄰邊分別相等
C. 對(duì)角線相互垂直平分
D. 兩條對(duì)角線分別平分一組對(duì)角
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如圖1,在△ABC和△ADE中,AB=AC=AD=AE,當(dāng)∠BAC+∠DAE=180°時(shí),我們稱△ABC與△DAE互為“頂補(bǔ)等腰三角形”,△ABC的邊BC上的高線AM叫做△ADE的“頂心距”,點(diǎn)A叫做“旋補(bǔ)中心”.
特例感知:
(1)在圖2,圖3中,△ABC與△DAE互為“頂補(bǔ)三角形”,AM,AN是“頂心距”.
①如圖2,當(dāng)∠BAC=90°時(shí),AM與DE之間的數(shù)量關(guān)系為AM= DE;
②如圖3,當(dāng)∠BAC=120°,BC=6時(shí),AN的長(zhǎng)為 .
猜想論證:
(2)在圖1中,當(dāng)∠BAC為任意角時(shí),猜想AM與DE之間的數(shù)量關(guān)系,并給予證明.
拓展應(yīng)用
(3)如圖4,在四邊形ABCD,AD=AB,CD=BC,∠B=90°,∠A=60°,CD=2,在四邊形ABCD的內(nèi)部是否存在點(diǎn)P,使得△PAD與△PBC互為“頂補(bǔ)等腰三角形”?若存在,請(qǐng)給予證明,并求△PBC的“頂心距”的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com