【題目】如圖,在ABCD中,AC為對(duì)角線,AC=BC=5,AB=6,AE是△ABC的中線.
(1)用無刻度的直尺畫出△ABC的高CH(保留畫圖痕跡);
(2)求△ACE的面積.
【答案】
(1)解:如圖,連接BD,BD與AE交于點(diǎn)F,連接CF并延長(zhǎng)到AB,則它與AB的交點(diǎn)即為H.
理由如下:
∵BD、AC是ABCD的對(duì)角線,
∴點(diǎn)O是AC的中點(diǎn),
∵AE、BO是等腰△ABC兩腰上的中線,
∴AE=BO,AO=BE,
∵AO=BE,
∴△ABO≌△BAE(SSS),
∴∠ABO=∠BAE,
△ABF中,∵∠FAB=∠FBA,∴FA=FB,
∵∠BAC=∠ABC,
∴∠EAC=∠OBC,
由 可得△AFC≌BFC(SAS)
∴∠ACF=∠BCF,即CH是等腰△ABC頂角平分線,
所以CH是△ABC的高;
(2)解:∵AC=BC=5,AB=6,CH⊥AB,
∴AH= AB=3,
∴CH= =4,
∴S△ABC= ABCH= ×6×4=12,
∵AE是△ABC的中線,
∴S△ACE= S△ABC=6.
【解析】此題考查了平行四邊形的性質(zhì)、等腰三角形的性質(zhì)、勾股定理以及三角形中線的性質(zhì).注意三角形的中線把三角形分成面積相等的兩部分.(1)連接BD,BD與AE交于點(diǎn)F,連接CF并延長(zhǎng)到AB,與AB交于點(diǎn)H,則CH為△ABC的高;(2)首先由三線合一,求得AH的長(zhǎng),再由勾股定理求得CH的長(zhǎng),繼而求得△ABC的面積,又由AE是△ABC的中線,求得△ACE的面積.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平行四邊形的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將半徑為3cm的圓形紙片沿AB折疊后,圓弧恰好能經(jīng)過圓心O,用圖中陰影部分的扇形圍成一個(gè)圓錐的側(cè)面,則這個(gè)圓錐的高為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高身體素質(zhì),有些人選擇到專業(yè)的健身中心鍛煉身體,某健身中心的消費(fèi)方式如下:
普通消費(fèi):35元/次;
白金卡消費(fèi):購(gòu)卡280元/張,憑卡免費(fèi)消費(fèi)10次再送2次;
鉆石卡消費(fèi):購(gòu)卡560元/張,憑卡每次消費(fèi)不再收費(fèi).
以上消費(fèi)卡使用年限均為一年,每位顧客只能購(gòu)買一張卡,且只限本人使用.
(1)李叔叔每年去該健身中心健身6次,他應(yīng)選擇哪種消費(fèi)方式更合算?
(2)設(shè)一年內(nèi)去該健身中心健身x次(x為正整數(shù)),所需總費(fèi)用為y元,請(qǐng)分別寫出選擇普通消費(fèi)和白金卡消費(fèi)的y與x的函數(shù)關(guān)系式;
(3)王阿姨每年去該健身中心健身至少18次,請(qǐng)通過計(jì)算幫助王阿姨選擇最合算的消費(fèi)方式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分別以點(diǎn)A,B為圓心,大于線段AB長(zhǎng)度一半的長(zhǎng)為半徑作弧,相交于點(diǎn)E,F(xiàn),過點(diǎn)E,F(xiàn)作直線EF,交AB于點(diǎn)D,連結(jié)CD,則CD的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Pn表示n邊形的對(duì)角線的交點(diǎn)個(gè)數(shù)(指落在其內(nèi)部的交點(diǎn)),如果這些交點(diǎn)都不重合,那么Pn與n的關(guān)系式是:Pn= (n2﹣an+b)(其中a,b是常數(shù),n≥4)
(1)通過畫圖,可得:四邊形時(shí),P4= ;五邊形時(shí),P5=
(2)請(qǐng)根據(jù)四邊形和五邊形對(duì)角線交點(diǎn)的個(gè)數(shù),結(jié)合關(guān)系式,求a,b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請(qǐng)補(bǔ)充完整.
(1)自變量x的取值范圍是全體實(shí)數(shù),x與y的幾組對(duì)應(yīng)值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中,m= .
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出了函數(shù)圖象的一部分,請(qǐng)畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì).
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有個(gè)交點(diǎn),所以對(duì)應(yīng)的方程x2﹣2|x|=0有個(gè)實(shí)數(shù)根;
②方程x2﹣2|x|=2有個(gè)實(shí)數(shù)根;
③關(guān)于x的方程x2﹣2|x|=a有4個(gè)實(shí)數(shù)根時(shí),a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=﹣2x+4與平面直角坐標(biāo)系中的x軸、y軸分別交于A、B兩點(diǎn),以AB為邊作等腰直角三角形ABC,使得點(diǎn)C與原點(diǎn)O在AB兩側(cè),則點(diǎn)C的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB的中點(diǎn)O為圓心,作半圓與AC相切,點(diǎn)P,Q分別是邊BC和半圓上的動(dòng)點(diǎn),連接PQ,則PQ長(zhǎng)的最大值與最小值的和是( 。
A.6
B.2 +1
C.9
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】銳銳參加我市電視臺(tái)組織的“牡丹杯”智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān),第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題銳銳都不會(huì),不過銳銳還有兩個(gè)“求助”可以用(使用“求助”一次可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).
(1)如果銳銳兩次“求助”都在第一道題中使用,那么銳銳通關(guān)的概率是 .
(2)如果銳銳兩次“求助”都在第二道題中使用,那么銳銳通關(guān)的概率是 .
(3)如果銳銳將每道題各用一次“求助”,請(qǐng)用樹狀圖或者列表來分析他順序通關(guān)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com