【題目】某班“數(shù)學(xué)興趣小組”對(duì)函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進(jìn)行了探究,探究過(guò)程如下,請(qǐng)補(bǔ)充完整.

(1)自變量x的取值范圍是全體實(shí)數(shù),x與y的幾組對(duì)應(yīng)值列表如下:

x

﹣3

﹣2

﹣1

0

1

2

3

y

3

m

﹣1

0

﹣1

0

3

其中,m=
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫(huà)出了函數(shù)圖象的一部分,請(qǐng)畫(huà)出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫(xiě)出兩條函數(shù)的性質(zhì).
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有個(gè)交點(diǎn),所以對(duì)應(yīng)的方程x2﹣2|x|=0有個(gè)實(shí)數(shù)根;
②方程x2﹣2|x|=2有個(gè)實(shí)數(shù)根;
③關(guān)于x的方程x2﹣2|x|=a有4個(gè)實(shí)數(shù)根時(shí),a的取值范圍是

【答案】
(1)0
(2)

如圖所示:


(3)

由函數(shù)圖象知:①函數(shù)y=x2﹣2|x|的圖象關(guān)于y軸對(duì)稱(chēng);②當(dāng)x>1時(shí),y隨x的增大而增大


(4)3;3;2;﹣1<a<0
【解析】解:(1)根據(jù)函數(shù)的對(duì)稱(chēng)性可得m=0,
故答案為:0;(4)①由函數(shù)圖象知:函數(shù)圖象與x軸有3個(gè)交點(diǎn),所以對(duì)應(yīng)的方程x2﹣2|x|=0有3個(gè)實(shí)數(shù)根;
②如圖,∵y=x2﹣2|x|的圖象與直線y=2有兩個(gè)交點(diǎn),
∴x2﹣2|x|=2有2個(gè)實(shí)數(shù)根;
③由函數(shù)圖象知:∵關(guān)于x的方程x2﹣2|x|=a有4個(gè)實(shí)數(shù)根,
∴a的取值范圍是﹣1<a<0,
故答案為:3,3,2,﹣1<a<0.
(1)根據(jù)函數(shù)的對(duì)稱(chēng)性即可得到結(jié)論;(2)描點(diǎn)、連線即可得到函數(shù)的圖象;(3)根據(jù)函數(shù)圖象得到函數(shù)y=x2﹣2|x|的圖象關(guān)于y軸對(duì)稱(chēng);當(dāng)x>1時(shí),y隨x的增大而增大;(4)①根據(jù)函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),即可得到結(jié)論;②如圖,根據(jù)y=x2﹣2|x|的圖象與直線y=2的交點(diǎn)個(gè)數(shù),即可得到結(jié)論;③根據(jù)函數(shù)的圖象即可得到a的取值范圍是﹣1<a<0.本題考查了二次函數(shù)的圖象和性質(zhì),正確的識(shí)別圖象是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)試銷(xiāo)一種成本為每件60元的服裝,規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)符合一次函數(shù)y=kx+b,且x=65時(shí),y=55;x=75時(shí),y=45.
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)若該商場(chǎng)獲得利潤(rùn)為W元,試寫(xiě)出利潤(rùn)W與銷(xiāo)售單價(jià)x之間的關(guān)系式;銷(xiāo)售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新農(nóng)村社區(qū)改造中,有一部分樓盤(pán)要對(duì)外銷(xiāo)售,某樓盤(pán)共23層,銷(xiāo)售價(jià)格如下:第八層樓房售價(jià)為4000元/米2 , 從第八層起每上升一層,每平方米的售價(jià)提高50元;反之,樓層每下降一層,每平方米的售價(jià)降低30元,已知該樓盤(pán)每套樓房面積均為120米2
若購(gòu)買(mǎi)者一次性付清所有房款,開(kāi)發(fā)商有兩種優(yōu)惠方案:
方案一:降價(jià)8%,另外每套樓房贈(zèng)送a元裝修基金;
方案二:降價(jià)10%,沒(méi)有其他贈(zèng)送.
(1)請(qǐng)寫(xiě)出售價(jià)y(元/米2)與樓層x(1≤x≤23,x取整數(shù))之間的函數(shù)關(guān)系式;
(2)老王要購(gòu)買(mǎi)第十六層的一套樓房,若他一次性付清購(gòu)房款,請(qǐng)幫他計(jì)算哪種優(yōu)惠方案更加合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】由一些相同的小正方體搭成的幾何體的左視圖和俯視圖如圖所示,請(qǐng)?jiān)诰W(wǎng)格中涂出一種該幾何體的主視圖,且使該主視圖是軸對(duì)稱(chēng)圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AC為對(duì)角線,AC=BC=5,AB=6,AE是△ABC的中線.

(1)用無(wú)刻度的直尺畫(huà)出△ABC的高CH(保留畫(huà)圖痕跡);
(2)求△ACE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)活動(dòng)課上,某學(xué)習(xí)小組對(duì)有一內(nèi)角為120°的平行四邊形ABCD(∠BAD=120°)進(jìn)行探究:將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),且60°角的頂點(diǎn)始終與點(diǎn)C重合,較短的直角邊和斜邊所在的兩直線分別交線段AB,AD于點(diǎn)E,F(xiàn)(不包括線段的端點(diǎn)).

(1)初步嘗試
如圖1,若AD=AB,求證:①△BCE≌△ACF,②AE+AF=AC;
(2)類(lèi)比發(fā)現(xiàn)
如圖2,若AD=2AB,過(guò)點(diǎn)C作CH⊥AD于點(diǎn)H,求證:AE=2FH;
(3)深入探究
如圖3,若AD=3AB,探究得: 的值為常數(shù)t,則t=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們根據(jù)指數(shù)運(yùn)算,得出了一種新的運(yùn)算,如表是兩種運(yùn)算對(duì)應(yīng)關(guān)系的一組實(shí)例:

指數(shù)運(yùn)算

21=2

22=4

23=8

31=3

32=9

33=27

新運(yùn)算

log22=1

log24=2

log28=3

log33=1

log39=2

log327=3

根據(jù)上表規(guī)律,某同學(xué)寫(xiě)出了三個(gè)式子:①log216=4,②log525=5,③log2 =﹣1.其中正確的是( 。
A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在周長(zhǎng)為12的菱形ABCD中,AE=1,AF=2,若P為對(duì)角線BD上一動(dòng)點(diǎn),則EP+FP的最小值為( 。

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校男子足球隊(duì)的年齡分布如圖所示,則根據(jù)圖中信息可知這些隊(duì)員年齡的平均數(shù),中位數(shù)分別是(  )
A.15.5,15.5
B.15.5,15
C.15,15.5
D.15,15

查看答案和解析>>

同步練習(xí)冊(cè)答案