【題目】解方程:

的解x=   

的解x=   

的解x=   

的解x=   

(1)根據(jù)你發(fā)現(xiàn)的規(guī)律直接寫(xiě)出⑤,⑥個(gè)方程及它們的解.

(2)請(qǐng)你用一個(gè)含正整數(shù)n的式子表示上述規(guī)律,并求出它的解.

【答案】①x=0②x=1③x=2④x=3(1)x=4,x=5(2)x=n﹣1

【解析】試題分析:1)等號(hào)左邊的分母都是,第一個(gè)式子的分子是1,第二個(gè)式子的分子是2,那么第5個(gè)式子的分子是5,第6個(gè)式子的分子是6.等號(hào)右邊被減數(shù)的分母是,分子的等號(hào)左邊的分子的2倍,減數(shù)是1,第一個(gè)式子的解是,第二個(gè)式子的解是,那么第5個(gè)式子的解是6個(gè)式子的解是
2)由(1)得第個(gè)式子的等號(hào)左邊的分母是,分子是,等號(hào)右邊的被減數(shù)的分母是,分子是,減數(shù)是1,結(jié)果是

試題解析:①,,

1)第⑤個(gè)方程: 解為

第⑥個(gè)方程: 解為

2)第個(gè)方程: 解為

方程兩邊都乘

解得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】楊輝是我國(guó)南宋時(shí)期杰出的數(shù)學(xué)家和教育家,下圖是楊輝在公元1261年著作《詳解九章算法》里面的一張圖,即“楊輝三角”,該圖中有很多規(guī)律,請(qǐng)仔細(xì)觀(guān)察,解答下列問(wèn)題:

1)圖中給出了七行數(shù)字,根據(jù)構(gòu)成規(guī)律,第8行中從右邊數(shù)第4個(gè)數(shù)是_______

2)利用不完全歸納法探索出第行中的所有數(shù)字之和為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a≠0,函數(shù)y= 與y=﹣ax2+a在同一直角坐標(biāo)系中的大致圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)平面直角坐標(biāo)系,按要求完成下列各小題.

(1)寫(xiě)出圖中的六邊形ABCDEF頂點(diǎn)在坐標(biāo)軸上的點(diǎn)的坐標(biāo);

(2)說(shuō)明點(diǎn)B與點(diǎn)C的縱坐標(biāo)有什么特點(diǎn)?線(xiàn)段BCx軸有怎樣的位置關(guān)系?

(3)寫(xiě)出點(diǎn)E關(guān)于y軸的對(duì)稱(chēng)點(diǎn)E′的坐標(biāo),并指出點(diǎn)E′與點(diǎn)C有怎樣的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,真命題是( 。

A. 當(dāng)路程一定時(shí),時(shí)間與速度成正比例

B. 全等三角形的面積相等的逆命題是真命題

C. 是最簡(jiǎn)二次根式

D. 到直線(xiàn)AB的距離等于1厘米的點(diǎn)的軌跡是平行于直線(xiàn)AB且和AB距離為1cm的一條直線(xiàn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k為常數(shù).
(1)求證:無(wú)論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過(guò)第三象限,求k的取值范圍;
(3)若原方程的一個(gè)根大于3,另一個(gè)根小于3,求k的最大整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,點(diǎn)P是一個(gè)反比例函數(shù)的圖象與正比例函數(shù)y=﹣2x的圖象的公共點(diǎn),PQ垂直于x軸,垂足Q的坐標(biāo)為(2,0).

1)求這個(gè)反比例函數(shù)的解析式;

2)如果點(diǎn)M在這個(gè)反比例函數(shù)的圖象上,且MPQ的面積為6,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列解答過(guò)程:如圖甲,ABCD,探索∠P與∠A,∠C之間的關(guān)系.

解:過(guò)點(diǎn)PPEAB.

ABCD,

PEABCD(平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行)

∴∠1+∠A180°(兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)),

2+∠C180°(兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ))

∴∠1+∠A+∠2+∠C360°.

又∵∠APC=∠1+∠2

∴∠APC+∠A+∠C360°.

如圖乙和圖丙,ABCD,請(qǐng)根據(jù)上述方法分別探索兩圖中∠P與∠A,∠C之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BF,DE相交于點(diǎn)A,BGBF于點(diǎn)B,交AC于點(diǎn)C.

(1)指出DEBCBF所截形成的同位角、內(nèi)錯(cuò)角、同旁?xún)?nèi)角;

(2)指出DE,BCAC所截形成的內(nèi)錯(cuò)角、同旁?xún)?nèi)角;

(3)指出FB,BCAC所截形成的內(nèi)錯(cuò)角、同旁?xún)?nèi)角.

查看答案和解析>>

同步練習(xí)冊(cè)答案