【題目】下列命題中,真命題是( 。

A. 當(dāng)路程一定時,時間與速度成正比例

B. 全等三角形的面積相等的逆命題是真命題

C. 是最簡二次根式

D. 到直線AB的距離等于1厘米的點的軌跡是平行于直線AB且和AB距離為1cm的一條直線

【答案】C

【解析】

利用路程、速度、時間的關(guān)系、全等三角形的性質(zhì)、最簡二次根式的定義及軌跡的定義分別判斷后即可確定正確的選項.

A、當(dāng)路程一定時,時間與速度成反比例,故本選項錯誤;

B、“全等三角形的面積相等”的逆命題是面積相等的三角形全等,是假命題,故本選項錯誤;

C是最簡二次根式,故本選項正確;

D、空間內(nèi)與直線AB距離等于1厘米的點的軌跡是平行于直線AB且和AB距離為1cm的無數(shù)條直線,故本選項錯誤;

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點.點1次向上跳動1個單位至點,緊接著第2次向左跳動2個單位至點,第3次向上跳動1個單位至點,第4次向右跳動3個單位至點,第5次又向上跳動1個單位至點,第6次向左跳動4個單位至點,……,照此規(guī)律,點2020次跳動至點的坐標(biāo)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要在街道旁修建一個奶站,向居民區(qū)AB提供牛奶,奶站應(yīng)建在什么地方,才能使從A,B到它的距離之和最短?小聰根據(jù)實際情況,以街道旁為x軸,建立了如圖所示的平面直角坐標(biāo)系,測得A點的坐標(biāo)為(0,3),B點的坐標(biāo)為(65),則從AB兩點到奶站距離之和的最小值是( )

A. 7 B. 9 C. 8 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為△ABC內(nèi)任意一點,若將△ABC作平移變換,使A點落在B點的位置上,已知A(3,4)B(2,2);C(2,-2)

(1) 請直接寫出B點、C點、P點的對應(yīng)點B1,C1,P1的坐標(biāo);

(2) 求△AOC的面積SAOC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為6cm的正方形ABCD中,點E、F、G、H分別從點A、B、C、D同時出發(fā),均以1cm/s的速度向點B、C、D、A勻速運動,當(dāng)點E到達點B時,四個點同時停止運動,在運動過程中,當(dāng)運動時間為s時,四邊形EFGH的面積最小,其最小值是cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

的解x=   

的解x=   

的解x=   

的解x=   

(1)根據(jù)你發(fā)現(xiàn)的規(guī)律直接寫出⑤,⑥個方程及它們的解.

(2)請你用一個含正整數(shù)n的式子表示上述規(guī)律,并求出它的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B(3,0),與y軸交于點C,連接BC交拋物線的對稱軸于點E,D是拋物線的頂點.
(1)求此拋物線的解析式;
(2)直接寫出點C和點D的坐標(biāo);
(3)若點P在第一象限內(nèi)的拋物線上,且SABP=4SCOE , 求P點坐標(biāo). 注:二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(﹣ ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4cm,BC=8cm,把△ABC沿對角線AC折疊,得到△AB'C,B'C與AD相交于點E,則AE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不解方程判斷下列方程中無實數(shù)根的是( )
A.﹣x2=2x﹣1
B.4x2+4x+ =0
C.
D.(x+2)(x﹣3)=﹣5

查看答案和解析>>

同步練習(xí)冊答案