【題目】已知:如圖,點P是一個反比例函數(shù)的圖象與正比例函數(shù)y=﹣2x的圖象的公共點,PQ垂直于x軸,垂足Q的坐標(biāo)為(2,0).

1)求這個反比例函數(shù)的解析式;

2)如果點M在這個反比例函數(shù)的圖象上,且MPQ的面積為6,求點M的坐標(biāo).

【答案】1y=﹣;(2M5,﹣)或(﹣1,8).

【解析】

1)由Q2,0),推出P2,-4),利用待定系數(shù)法即可解決問題;
2)根據(jù)三角形的面積公式求出MN的長,分兩種情形求出點M的坐標(biāo)即可.

(1)把x=2代入y=﹣2x得 y=﹣4

P2,﹣4),

設(shè)反比例函數(shù)解析式yk≠0),

P在此圖象上

k(﹣4)=﹣8,

y=﹣

2

P2,﹣4),Q2,0

PQ4,過MMNPQN

PQMN6,

MN3

設(shè)Mx,﹣),

則 x=2+3=5或x=2﹣3=﹣1

當(dāng)x5時,﹣=﹣,

當(dāng)x=﹣1時,﹣1,

M5,﹣)或(﹣18).

故答案為:(1y=﹣;(2M5,﹣)或(﹣1,8).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù)y=x2﹣2mx﹣3,下列結(jié)論錯誤的是(
A.它的圖象與x軸有兩個交點
B.方程x2﹣2mx=3的兩根之積為﹣3
C.它的圖象的對稱軸在y軸的右側(cè)
D.x<m時,y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為△ABC內(nèi)任意一點,若將△ABC作平移變換,使A點落在B點的位置上,已知A(3,4);B(2,2)C(2,-2)

(1) 請直接寫出B點、C點、P點的對應(yīng)點B1C1,P1的坐標(biāo);

(2) 求△AOC的面積SAOC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

的解x=   

的解x=   

的解x=   

的解x=   

(1)根據(jù)你發(fā)現(xiàn)的規(guī)律直接寫出⑤,⑥個方程及它們的解.

(2)請你用一個含正整數(shù)n的式子表示上述規(guī)律,并求出它的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B(3,0),與y軸交于點C,連接BC交拋物線的對稱軸于點E,D是拋物線的頂點.
(1)求此拋物線的解析式;
(2)直接寫出點C和點D的坐標(biāo);
(3)若點P在第一象限內(nèi)的拋物線上,且SABP=4SCOE , 求P點坐標(biāo). 注:二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為△ABC內(nèi)任意一點,若將△ABC作平移變換,使A點落在B點的位置上,已知A(3,4)B(2,2)C(2,-2)

(1) 請直接寫出B點、C點、P點的對應(yīng)點B1C1P1的坐標(biāo);

(2) 求△AOC的面積SAOC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4cm,BC=8cm,把△ABC沿對角線AC折疊,得到△AB'C,B'C與AD相交于點E,則AE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD,EF相交于點O,則∠AOD的對頂角是_________,∠AOC的鄰補角是_______.若∠AOC50°,則∠BOD__________,∠COB______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+4與x軸、y軸分別交于點A和點B,點C、D分別為線段ABOB的中點,點POA上一動點,當(dāng)PC+PD最小時,點P的坐標(biāo)為(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案