【題目】某校團委舉辦了一次“中國夢我的夢”演講比賽滿分10分,學(xué)生得分均為整數(shù),成績達6分以上(含6分)為合格,達到9分以上(含9分)為優(yōu)秀.如圖所示是這次競賽中甲、乙兩組學(xué)生成績分布的條形統(tǒng)計圖.
(1)補充完成下列的成績統(tǒng)計分析表:
組別 | 平均分 | 中位數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
甲 | 6 | 3.41 | 90% | 20% | |
乙 | 7.1 | 1.69 | 80% | 10% |
(2)小明同學(xué)說:“這次競賽我得了7分,在我們小組中排名屬中游略偏上!”觀察上表可知,小明是______組學(xué)生;(填“甲”或“乙”)
(3)甲組同學(xué)說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績好于乙組.但乙組同學(xué)不同意甲組同學(xué)的說法,認為他們組的成績要好于甲組.請你給出兩條支持乙組同學(xué)觀點的理由.
【答案】(1)甲組平均分6.7,乙組中位數(shù)7.5 ;(2)甲;(3)乙組的平均分高于甲組;乙組的中位數(shù)高于甲組,所以乙組的成績要好于甲組.(答案不唯一)
【解析】
(1)先根據(jù)條形統(tǒng)計圖寫出甲乙兩組的成績,然后分別計算甲的平均數(shù),乙的中位數(shù);
(2)比較兩組的中位數(shù)進行判斷;
(3)通過乙組的平均數(shù)、中位數(shù)進行說明.
解:(1)甲組:3,6,6,6,6,6,7,8,9,10,
甲組平均數(shù);
乙組:5,5,6,7,7,8,8,8,8,9,
乙組中位數(shù);
(2)因為甲組的中位數(shù)為6,乙組的中位數(shù)是7.5,所以7分在甲組排名屬中游略偏上,故小明是甲組的學(xué)生;
(3)兩條支持乙組同學(xué)觀點的理由:①乙組的平均數(shù)高于甲組;②乙組的中位數(shù)高于甲組,所以乙組的成績要好于甲組.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題發(fā)現(xiàn):
(1)如圖①,正方形ABCD的邊長為4,對角線AC、BD相交于點O,E是AB上點(點E不與A、B重合),將射線OE繞點O逆時針旋轉(zhuǎn)90°,所得射線與BC交于點F,則四邊形OEBF的面積為 .
問題探究:
(2)如圖②,線段BQ=10,C為BQ上點,在BQ上方作四邊形ABCD,使∠ABC=∠ADC=90°,且AD=CD,連接DQ,求DQ的最小值;
問題解決:
(3)“綠水青山就是金山銀山”,某市在生態(tài)治理活動中新建了一處南山植物園,圖③為南山植物園花卉展示區(qū)的部分平面示意圖,在四邊形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC為觀賞小路,設(shè)計人員考慮到為分散人流和便觀賞,提出三條小路的長度和要取得最大,試求AB+BD+BC的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法.學(xué)校采取隨機抽樣的方法進行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對調(diào)查結(jié)果進行整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:
(1)本次調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計圖中,m的值是 ;
(2)將條形統(tǒng)計圖補充完整;
(3)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動,請寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2011山東濟南,27,9分)如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線經(jīng)過A、C兩點,與AB邊交于點D.
(1)求拋物線的函數(shù)表達式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達式,并求出m為何值時,S取得最大值;
②當S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形紙片中,,點是邊上的一點,將紙片沿折疊,點落在處,恰好經(jīng)過的中點,則的度數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形的對角線與相交于點,點為的中點,連接并延長交的延長線于點,連接.
(1)求證:;
(2)當,時,請判斷四邊形的形狀,并證明你的結(jié)論.
(3)當四邊形是正方形時,請判斷的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)如圖,在建立了平面直角坐標系的正方形網(wǎng)格中,A(2,2),B(1,0),C(3,1)
(1)畫出ΔABC關(guān)于x軸對稱的ΔA1B1C1.
(2)畫出將ΔABC繞點B逆時針旋轉(zhuǎn)900,所得的ΔA2B2C2.
(3)直接寫出A2點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】軍運會前某項工程要求限期完成,甲隊獨做正好按期完成,乙隊獨做則要誤期4天,現(xiàn)兩隊合作3天后,余下的工程再由乙隊獨做,比限期提前一天完成.
(1)請問該工程限期是多少天?
(2)已知甲隊每天的施工費用為1000元,乙隊每天的施工費用為800元,要使該項工程的總費用不超過7000元,乙隊最多施工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點G.點F是CD上一點,且滿足,連接AF并延長交⊙O于點E.連接AD、DE,若CF=2,AF=3.給出下列結(jié)論:
①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.
其中正確的是( 。
A. ①②④ B. ①②③ C. ②③④ D. ①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com