【題目】(2017江蘇省連云港市)如圖,已知等邊三角形OAB與反比例函數(shù)(k>0,x>0)的圖象交于A、B兩點,將△OAB沿直線OB翻折,得到△OCB,點A的對應點為點C,線段CB交x軸于點D,則的值為____.(已知sin15°=)
【答案】.
【解析】
解:如圖,過O作OM⊥AB于M.∵△AOB是等邊三角形,∴AM=BM,∠AOM=∠BOM=30°,∴A、B關于直線OM對稱.∵A、B兩點在反比例函數(shù)(k>0,x>0)的圖象上,且反比例函數(shù)關于直線y=x對稱,∴直線OM的解析式為:y=x,∴∠BOD=45°﹣30°=15°.過B作BF⊥x軸于F,過C作CN⊥x軸于N,sin∠BOD=sin15°==.∵∠BOC=60°,∠BOD=15°,∴∠CON=45°,∴△CNO是等腰直角三角形,∴CN=ON,設CN=x,則OC=,∴OB=,∴ =,∴BF=.∵BF⊥x軸,CN⊥x軸,∴BF∥CN,∴△BDF∽△CDN,∴ ==.故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交線段BC,AC于點D,E,過點D作DF⊥AC,垂足為F,線段FD,AB的延長線相交于點G.
(1)求證:DF是⊙O的切線;
(2)若CF=1,DF=,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,下列4個三角形中,均有AB=AC,則經過三角形的一個頂點的一條直線能夠將這個三角形分成兩個小等腰三角形的是( 。
A. ①③B. ①②④C. ①③④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:用2輛A型車和1輛B型車載滿貨物一次可運貨10噸;用1輛A型車和2輛B型車載滿貨物一次可運貨11噸,某物流公司現(xiàn)有26噸貨物,計劃A型車a輛,B型車b輛,一次運完,且恰好每輛車都載滿貨物.
根據(jù)以上信息,解答下列問題:
(1)1輛A型車和1輛車B型車都載滿貨物一次可分別運貨多少噸?
(2)請你幫該物流公司設計租車方案;
(3)若A型車每輛需租金100元/次,B型車每輛需租金120元/次.請選出最省錢車方案,并求出最少租車費.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)敘述并證明三角形內角和定理(證明用圖 1);
(2)如圖 2 是七角星形,求∠A+∠B+∠C+∠D+∠E+∠F+∠G 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店決定購進A、B兩種紀念品.若購進A種紀念品10件,B種紀念品5件,需要1000元;若購進A種紀念品5件,B種紀念品3件,需要550元.
(1)求購進A、B兩種紀念品每件各需多少元?
(2)若該商店決定拿出1萬元全部用來購進這兩種紀念品,考慮到市場需求,要求購進A種紀念品的數(shù)量不少于B種紀念品數(shù)量的6倍,且不超過B種紀念品數(shù)量的8倍,那么該商店共有幾種進貨方案?
(3)若銷售每件A種紀念品可獲利潤20元,每件B 種紀念品可獲利潤30元,在(2)的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=3,M是邊CD上一點,將△ADM沿直線AM對折,得到△ANM.
(1)當AN平分∠MAB時,求DM的長;
(2)連接BN,當DM=1時,求△ABN的面積;
(3)當射線BN交線段CD于點F時,求DF的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,甲、乙兩機器人分別從A、B兩點同時同向出發(fā),經過7min同時到達C點,乙機器人始終以60m/min的速度行走,如圖是甲、乙兩機器人之間的距離y(m)與他們的行走時間x(min)之間的圖象,請結合圖象,回答下列問題:
(1)A、B兩點之間的距離是 m,甲機器人前2min的速度為 m/min.
(2)若前3min甲機器人的速度不變,求出前3min,甲、乙兩機器人之間的距離y(m)與他們的行走時間r(min)之間的關系式.
(3)求出兩機器人出發(fā)多長時間相距28m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解本校七年級學生課后延時服務課外閱讀情況,隨機抽取該校七年級部分學生進行問卷調查(每人只選一種書籍),如圖是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答下列問題:
(1)這次活動一共調查了________名學生;
(2)在扇形統(tǒng)計圖中,“小說”所在扇形的圓心角等于________;
(3)補全條形統(tǒng)計圖.
(4)若該校七年級學生720人,試求出該年級閱讀漫畫的學生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com