【題目】已知:如圖,AB∥CD,∠B=∠D.點EF分別在AB、CD上.連接AC,分別交DE、BF于G、H.求證:∠1+∠2=180°
證明:∵AB∥CD,
∴∠B=_____._____
又∵∠B=∠D,
∴_____=_____.(等量代換)
∴_____∥_____._____
∴∠l+∠2=180°._____
【答案】∠BFC 兩直線平行,內(nèi)錯角相等 ∠D ∠BFC DE BF 同位角相等,兩直線平行 兩直線平行,同旁內(nèi)角互補
【解析】
根據(jù)平行線的性質(zhì)結(jié)合已知得到∠D=∠BFC,證明DE∥BF,利用平行線的性質(zhì)得出結(jié)論.
證明:∵AB∥CD,
∴∠B=∠BFC.(兩直線平行,內(nèi)錯角相等),
又∵∠B=∠D,
∴∠D=∠BFC.(等量代換)
∴DE∥BF.(同位角相等,兩直線平行),
∴∠l+∠2=180°.(兩直線平行,同旁內(nèi)角互補).
故答案為:∠BFC;兩直線平行,內(nèi)錯角相等;∠D;∠BFC;DE;BF;同位角相等,兩直線平行;兩直線平行,同旁內(nèi)角互補.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是直線AB上的一點,∠AOC=45°,OE是∠BOC內(nèi)部的一條射線,且OF平分∠AOE.
(1)如圖1,若∠COF=35°,求∠EOB的度數(shù);
(2)如圖2,若∠EOB=40°,求∠COF的度數(shù);
(3)如圖3,∠COF與∠EOB有怎樣的數(shù)量關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四張質(zhì)地相同的卡片如圖所示.將卡片洗勻后,背面朝上放置在桌面上.
(1)求隨機抽取一張卡片,恰好得到數(shù)字2的概率;
(2)小貝和小晶想用以上四張卡片做游戲,游戲規(guī)則見信息圖.你認(rèn)為這個游戲公平嗎?請用列表法或畫樹形圖法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線l1與直線l2平行,且它們之間的距離為3,A,B是直線l1上的兩個定點,C,D是直線l2上的兩個動點(點C在點D的左側(cè)),AB=CD=6,連接AC、BD、BC,將△ABC沿BC折疊得到△A1BC.(如圖1)
(1)當(dāng)A1與D重合時(如圖2),四邊形ABDC是什么特殊四邊形,為什么?
(2)當(dāng)A1與D不重合時,連接A1D,則A1 D∥BC(不需證明),此時若以A1,B,C,D為頂點的四邊形為矩形,且矩形的邊長分別為a,b,求(a+b)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AC=6,BD=6,E是BC邊的中點,P,M分別是AC,AB上的動點,連接PE,PM,則PE+PM的最小值是( 。
A. 6 B. 3 C. 2 D. 4.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l為y=x,過點A1(1,0)作A1B1⊥x軸,與直線l交于點B1,以原點O為圓心,OB1長為半徑畫圓弧交x軸于點A2;再作A2B2⊥x軸,交直線l于點B2,以原點O為圓心,OB2長為半徑畫圓弧交x軸于點A3;……,按此作法進行下去,則點An的坐標(biāo)為(_______).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了增強學(xué)生的環(huán)保意識,某校組織了一次全校2000名學(xué)生都參加的“環(huán)保知識”考試,考題共10題.考試結(jié)束后,學(xué)校團委隨機抽查部分考生的考卷,對考生答題情況進行分析統(tǒng)計,發(fā)現(xiàn)所抽查的考卷中答對題量最少為6題,并且繪制了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖提供的信息解答以下問題:
(1)本次抽查的樣本容量是 ;在扇形統(tǒng)計圖中,m= ,n= ,“答對8題”所對應(yīng)扇形的圓心角為 度;
(2)將條形統(tǒng)計圖補充完整;
(3)請根據(jù)以上調(diào)查結(jié)果,估算出該校答對不少于8題的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長為 ,寬為 的大長方形被分割為 小塊,除陰影 , 外,其余 塊是形狀、大小完全相同的小長方形,其較短一邊長為 .
(1)每個小長方形較長的一邊長是 (用含 的代數(shù)式表示).
(2)分別用含 , 的代數(shù)式表示陰影 , 的面積,并計算陰影 A 的面積與陰影B的面積的差.
(3)當(dāng) 時,陰影 與陰影 的面積差會隨著 的變化而變化嗎?請你作出判斷,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長是4,點E是AB邊上一動點,連接CE,過點B作BG⊥CE于點G,點P是AB邊上另一動點,則PD+PG的最小值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com