【題目】如圖①,在矩形紙片ABCD中,AB= +1,AD=

(1)如圖②,將矩形紙片向上方翻折,使點(diǎn)D恰好落在AB邊上的D′處,壓平折痕交CD于點(diǎn)E,則折痕AE的長(zhǎng)為
(2)如圖③,再將四邊形BCED′沿D′E向左翻折,壓平后得四邊形B′C′ED′,B′C′交AE于點(diǎn)F,則四邊形B′FED′的面積為
(3)如圖④,將圖②中的△AED′繞點(diǎn)E順時(shí)針旋轉(zhuǎn)α角,得△A′ED″,使得EA′恰好經(jīng)過(guò)頂點(diǎn)B,求弧D′D″的長(zhǎng) . (結(jié)果保留π)

【答案】
(1)
(2)
(3)
【解析】解:(1)∵△ADE反折后與△AD′E重合,

∴AD′=AD=D′E=DE=

∴AE= = = ;

⑵∵由(1)知AD′= ,

∴BD′=1,

∵將四邊形BCED′沿D′E向左翻折,壓平后得四邊形B′C′ED′,

∴B′D′=BD′=1,

∵由(1)知AD′=AD=D′E=DE= ,

∴四邊形ADED′是正方形,

∴B′F=AB′= ﹣1,

∴S梯形B′FED′= (B′F+D′E)B′D′= ﹣1+ )×1=

所以答案是:(1) ;(2) ;

⑶∵∠C=90°,BC= ,EC=1,

∴tan∠BEC= =

∴∠BEC=60°,

由翻折可知:∠DEA=45°,

∴∠AEA′=75°=∠D′ED″,

=

【考點(diǎn)精析】利用勾股定理的概念和弧長(zhǎng)計(jì)算公式對(duì)題目進(jìn)行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;若設(shè)⊙O半徑為R,n°的圓心角所對(duì)的弧長(zhǎng)為l,則l=nπr/180;注意:在應(yīng)用弧長(zhǎng)公式進(jìn)行計(jì)算時(shí),要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過(guò)O作直線MNBC.設(shè)MN交ACB的平分線于點(diǎn)E,交ACB的外角平分線于點(diǎn)F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長(zhǎng);

(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)用14500元購(gòu)進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價(jià)與銷售價(jià)如表(二)所示:

類別

成本價(jià)(元/箱)

銷售價(jià)(元/箱)

25

35

35

48

求:(1)購(gòu)進(jìn)甲、乙兩種礦泉水各多少箱?

(2)該商場(chǎng)售完這500箱礦泉水,可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“龜兔賽跑”的故事同學(xué)們都聽(tīng)過(guò),圖中的線段OD和折線OABC表示龜兔賽跑時(shí)路程與時(shí)間的關(guān)系,請(qǐng)根據(jù)圖中的信息,解決下列問(wèn)題:

(1)填空:折線OABC表示賽跑過(guò)程中_________(填“兔子”或“烏龜”)的路程與時(shí)間的關(guān)系,賽跑的全程是_______米.

(2)兔子在起初每分鐘跑多少米?烏龜每分鐘爬多少米?

(3)烏龜用了多少分鐘追上了正在睡覺(jué)的兔子?

(4)兔子醒來(lái)后以400/分鐘的速度跑向終點(diǎn),結(jié)果還是比烏龜晚到了0.5分鐘,請(qǐng)你算算兔子中間停下睡覺(jué)用了多少時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BECE分別為ABC的內(nèi)角平分線和外角平分線,BEAC于點(diǎn)H,CF平分∠ACBBE于點(diǎn)F連接AE.則下列結(jié)論:①∠ECF=90°;②AE=CE;③;④∠BAC=2BEC;⑤∠AEH=BCF,正確的個(gè)數(shù)為(

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形網(wǎng)格中,小格的頂點(diǎn)叫做格點(diǎn)。小華按下列要求作圖:①在正方形網(wǎng)格的三條不同的實(shí)線上各取一個(gè)格點(diǎn),使其中任意兩點(diǎn)不在同一條實(shí)線上;②連結(jié)三個(gè)格點(diǎn),使之構(gòu)成直角三角形。小華在左邊的正方形網(wǎng)格中作出了RtABC。請(qǐng)你按照同樣的要求,在右邊的兩個(gè)正方形網(wǎng)格中各畫出一個(gè)直角三角形,并使三個(gè)網(wǎng)格中的直角三角形互不全等。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小明設(shè)計(jì)的過(guò)直線外一點(diǎn)作這條直線的平行線的尺規(guī)作圖過(guò)程.

已知:如圖 ,直線 及直線 外一點(diǎn)

求作:直線 ,使得

作法:如圖

①在直線 上取一點(diǎn) ,連接

②作 的平分線 ;

③以點(diǎn) 為圓心, 長(zhǎng)為半徑畫弧,交射線 于點(diǎn) ;

④作直線

所以直線 就是所求作的直線.根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過(guò)程.

1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡);

2)完成下面的證明.

證明:

平分 ,

,

____________________)(填推理依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中真命題的個(gè)數(shù)是(

①平面內(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線平行;②5個(gè)數(shù)中有2個(gè)是無(wú)理數(shù);③若,則點(diǎn)P(-m,5)在第一象限;④的算術(shù)平方根是4;⑤經(jīng)過(guò)一點(diǎn)有且只有一條直線與已知直線垂直;⑥同旁內(nèi)角互補(bǔ).

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠B=90°,ABCD,MBC邊上的一點(diǎn),且AM平分∠BAD,DM平分∠ADC.

求證:(1)AMDM;

(2)MBC的中點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案