【題目】如圖,在中,,是邊上的兩點,且有,則圖中等腰三角形的個數(shù)是(

A.2B.6C.5D.7

【答案】B

【解析】

根據(jù)等角對等邊、三角形外角的性質和三角形的內角和定理逐一判斷即可.

解:∵,

∴△ABC和△ADE都是等腰三角形,∠DAB=ADE-∠B=36°,∠EAC=AED-∠C=36°

∴∠DAB=B,∠EAC=C

∴△DAB和△EAC都是等腰三角形

∵∠B+∠BEA+∠BAE=180°,∠C+∠CDA+∠CAD=180°

∴∠BAE=180°-∠B-∠BEA=72°,∠CAD=180°-∠C-∠CDA=72°

∴∠BAE=BEA,∠CAD=CDA

∴△BAE和△CAD都是等腰三角形

綜上:共有6個等腰三角形

故選B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點兩點關于原點對稱,將點向左平移3個單位到達點,設點,且.

1)求實數(shù)的值;

2)畫出以點為頂點的四邊形,并求出這個四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華文明,源遠流長;中華漢字,寓意深廣,為傳承中華優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的漢字聽寫大賽為了解本次大賽的成績,校團委隨機抽取了其中若干名學生的成績作為樣本進行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:

成績

頻數(shù)

頻率

10

 

30

 

40

n

 

m

 

50

a

1

請根據(jù)所給信息,解答下列問題:

______,______,______;

補全頻數(shù)直方圖;

這若干名學生成績的中位數(shù)會落在______分數(shù)段;

若成績在90分以上包括90的為優(yōu)等,請你估計該校參加本次比賽的3000名學生中成績是優(yōu)等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一次射擊訓練中甲、乙兩人的10次射擊成績的分布情況,則射擊成績的方差較小的是_____(填“甲”或“乙”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列條件能判定ABC≌△DEF的是(  )

A. AB=DE AC=DF B=EB. AB=DE AC=DF C=F

C. AB=DE AC=DF A=DD. AB=DE AC=DF B=F

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Aa0),Cb,2),且滿足(a+b2+|a-b+4|=0,過點CCBx軸于B.

1)如圖1,求ABC的面積.

2)如圖2,若過BBDACy軸于D,在ABC內有一點E,連接AE.DE,若∠CAE+BDE=EAO+EDO,求∠AED的度數(shù).

3)如圖3,在(2)的條件下,DEx軸交于點M,ACy軸交于點F,作AME的角平分線MP,在PE上有一點Q,連接QM,∠EAM+2PMQ=45°,當AE=2AM,FO=2QM時,求點E的縱坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD繞點A逆時針旋轉30°到正方形AB′C′D′,則圖中陰影部分的面積為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學習完第五章《相交線與平行線》后,王老師布置了一道兒何證明題如下:如圖,已知直線ABCD被直線EF所截,FG平分∠EFD,∠1=∠280°,求∠BGF的度數(shù).善于動腦的小軍快速思考,找到了解題方案,并書寫出了如下不完整的解題過程.請你將該題解題過程補充完整:

解:∵∠1=∠280°(已知)

ABCD   

∴∠BGF+3180°   

∵∠2+EFD180°(鄰補角的定義),

∴∠EFD   °(等式性質)

FG平分∠EFD(已知),

∴∠EFD=23(角平分線的定義)

∴∠3   °(等式性質)

∴∠BGF   °(等式性質)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l1l2,直線l3和直線l1l2交于CD兩點,點P在直線CD上.

(1)試寫出圖1中∠APB、∠PAC、∠PBD之間的關系,并說明理由;

(2)如果P點在C、D之間運動時,∠APB、∠PAC、∠PBD之間的關系會發(fā)生變化嗎?

答:   (填發(fā)生或不發(fā)生)

(3)若點PC、D兩點的外側運動時(P點與點C、D不重合),如圖2,圖3,試分別寫出∠PAC、∠APB、∠PBD之間的關系,并說明理由.

查看答案和解析>>

同步練習冊答案