【題目】如圖,在中,,,點(diǎn)在邊上,,.點(diǎn)是線段上一動(dòng)點(diǎn),當(dāng)半徑為的與的一邊相切時(shí),的長(zhǎng)為____________.
【答案】或或
【解析】
根據(jù)勾股定理得到AB、AD的值,再分3種情況根據(jù)相似三角形性質(zhì)來(lái)求AP的值.
解:∵在中,,,,
∴AD=
在Rt△ACB中,,,,
∴CB=6+10=16
∵AB =AC +BC
AB=
①當(dāng)⊙P與BC相切時(shí),設(shè)切點(diǎn)為E,連結(jié)PE, 則PE=4,∠AEP=90°
∵AD=BD=10
∴∠EAP=∠CBA, ∠C=∠AEP=90°
∴△APE∽△ACB
②當(dāng)⊙P與AC相切時(shí),設(shè)切點(diǎn)為F,連結(jié)PF,則PF=4,∠AFP=90°
∵∠C=∠AFP=90°
∠CAD=∠FAP
∴△CAD∽△FAP
③當(dāng)⊙P與BC相切時(shí),設(shè)切點(diǎn)為G,連結(jié)PG,則PG=4,∠AGP=90°
∵∠C=∠PGD=90°
∠ADC=∠PDG
∴△CAD∽△GPD
故答案為:或或5
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形ABCD,其中AD>AB,依題意先畫(huà)出圖形,然后解答問(wèn)題.
(1)F為DC邊上一點(diǎn),把△ADF沿AF折疊,使點(diǎn)D恰好落在BC上的點(diǎn)E處.在圖1中先畫(huà)出點(diǎn)E,再畫(huà)出點(diǎn)F,若AB=8,AD=10,直接寫(xiě)出EF的長(zhǎng)為 ;
(2)把△ADC沿對(duì)角線AC折疊,點(diǎn)D落在點(diǎn)E處,在圖2先畫(huà)出點(diǎn)E,AE交CB于點(diǎn)F,連接BE.求證:△BEF是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】動(dòng)點(diǎn)A(m+2,3m+4)在直線l上,點(diǎn)B(b,0)在x軸上,如果以B為圓心,半徑為1的圓與直線l有交點(diǎn),則b的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】發(fā)現(xiàn)任意三個(gè)連續(xù)的整數(shù)中,最大數(shù)與最小數(shù)這兩個(gè)數(shù)的平方差是4的倍數(shù);
驗(yàn)證:(1) 的結(jié)果是4的幾倍?
(2)設(shè)三個(gè)連續(xù)的整數(shù)中間的一個(gè)為n,計(jì)算最大數(shù)與最小數(shù)這兩個(gè)數(shù)的平方差,并說(shuō)明它是4的倍數(shù);
延伸:說(shuō)明任意三個(gè)連續(xù)的奇數(shù)中,最大的數(shù)與最小的數(shù)這兩個(gè)數(shù)的平方差是8的倍數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形中,,,,將繞著點(diǎn)順時(shí)針旋轉(zhuǎn)得 ,連接 ,.
(1)求證:≌;
(2)求證:;
(3)若,點(diǎn)在四邊形內(nèi)部運(yùn)動(dòng),且滿(mǎn)足,求點(diǎn)運(yùn)動(dòng)路徑的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥y軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象經(jīng)過(guò)頂點(diǎn)C、D,若點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,矩形ABCD中,E是AD的中點(diǎn),以點(diǎn)E直角頂點(diǎn)的直角三角形EFG的兩邊EF,EG分別過(guò)點(diǎn)B,C,∠F=30°.
(1)求證:BE=CE
(2)將△EFG繞點(diǎn)E按順時(shí)針?lè)较蛐D(zhuǎn),當(dāng)旋轉(zhuǎn)到EF與AD重合時(shí)停止轉(zhuǎn)動(dòng).若EF,EG分別與AB,BC相交于點(diǎn)M,N.(如圖2)
①求證:△BEM≌△CEN;
②若AB=2,求△BMN面積的最大值;
③當(dāng)旋轉(zhuǎn)停止時(shí),點(diǎn)B恰好在FG上(如圖3),求sin∠EBG的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱(chēng)軸與x軸交于點(diǎn)D,若點(diǎn)P為y軸上的一個(gè)動(dòng)點(diǎn),連接PD,則的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明家所在居民樓的對(duì)面有一座大廈AB,高為74米,為測(cè)量居民樓與大廈之間的距離,小明從自己家的窗戶(hù)C處測(cè)得大廈頂部A的仰角為37°,大廈底部B的俯角為48°.
(1)求∠ACB的度數(shù);
(2)求小明家所在居民樓與大廈之間的距離.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈,sin48°≈,cos48°≈,tan48°≈)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com