【題目】如圖,四邊形中,,,,將繞著點(diǎn)順時(shí)針旋轉(zhuǎn)得 ,連接 ,.
(1)求證:≌;
(2)求證:;
(3)若,點(diǎn)在四邊形內(nèi)部運(yùn)動(dòng),且滿足,求點(diǎn)運(yùn)動(dòng)路徑的長(zhǎng)度.
【答案】(1)詳見解析;(2)詳見解析;(3).
【解析】
(1)根據(jù)等式的基本性質(zhì)可得,然后利用SAS即可證出≌;
(2)根據(jù)四邊形的內(nèi)角和和全等三角形的性質(zhì)可得,從而求出∠CBE=90°,根據(jù)勾股定理可得,根據(jù)等邊三角形的判定及性質(zhì)可得,從而證出結(jié)論;
(3)如圖,設(shè)為滿足條件的點(diǎn),將繞著點(diǎn)順時(shí)針旋轉(zhuǎn)60度得,連接,,
,,, DB,先利用SAS證出≌,從而得出,∠AQD=∠AFB,然后證出為等邊三角形,△ADB為等邊三角形,從而得出, DB=AB=2,然后根據(jù)勾股定理的逆定理可得,根據(jù)四點(diǎn)共圓證出點(diǎn)的路徑為過、、三點(diǎn)的圓上,求出圓心角和半徑即可求出點(diǎn)運(yùn)動(dòng)路徑的長(zhǎng)度.
證明:(1)∵
∴
∴
在和中
∴≌
(2)在四邊形中
∵≌
∴,
∴
∴
∴
又∵,
∴△AEC為等邊三角形
∴
∴
(3)如圖,設(shè)為滿足條件的點(diǎn),將繞著點(diǎn)順時(shí)針旋轉(zhuǎn)60度得,連接,,
,,, DB.
∵
∴
∴
在和中
∴≌
∴,∠AQD=∠AFB,
∵,AQ=AF,∠DAB=60°,AD=AB
∴為等邊三角形,△ADB為等邊三角形
∴, DB=AB=2
∵
∴
∴
∴
∵∠BCD=30°
∴∠DQB+∠BCD=180°
∴點(diǎn)的路徑為過、、三點(diǎn)的圓上
設(shè)圓心為,連接OD、OB
則,
∴△OBD為等邊三角形
∴,
∴點(diǎn)的運(yùn)動(dòng)的路徑長(zhǎng)為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一家游泳館的游泳收費(fèi)標(biāo)準(zhǔn)為30元/次,若購(gòu)買會(huì)員年卡,可享受如下優(yōu)惠:
會(huì)員年卡類型 | 辦卡費(fèi)用(元) | 每次游泳收費(fèi)(元) |
A 類 | 50 | 25 |
B 類 | 200 | 20 |
C 類 | 400 | 15 |
例如,購(gòu)買A類會(huì)員年卡,一年內(nèi)游泳20次,消費(fèi)50+25×20=550元,若一年內(nèi)在該游泳館游泳的次數(shù)介于40~50次之間,則最省錢的方式為( )
A.購(gòu)買A類會(huì)員卡B.購(gòu)買B類會(huì)員年卡
C.購(gòu)買C類會(huì)員年卡D.不購(gòu)買會(huì)員年卡
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)P在⊙O上,弦PB與CD交于點(diǎn)F,且FC=FB.
(1)求證:PD∥CB;
(2)若AB=26,EB=8,求CD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)某學(xué)校“智慧方園”數(shù)學(xué)社團(tuán)遇到這樣一個(gè)題目:
如圖(1),在中,點(diǎn)在線段上,,,,,求的長(zhǎng).經(jīng)過社團(tuán)成員討論發(fā)現(xiàn):過點(diǎn)作,交的延長(zhǎng)線于點(diǎn),通過構(gòu)造就可以解決問題,如圖(2).請(qǐng)回答:______.
(2)求的長(zhǎng).
(3)請(qǐng)參考以上解決思路,解決問題:如圖(3),在四邊形中,對(duì)角線與相交于點(diǎn),,,,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)為長(zhǎng)為5的線段上一點(diǎn),且,過作于,且,以為鄰邊作矩形,將線段繞點(diǎn)B順時(shí)針旋轉(zhuǎn),得到線段,優(yōu)弧交于,交于,設(shè)旋轉(zhuǎn)角為
(1)若扇形的面積為,則的度數(shù)為_______.
(2)連接,判斷與扇形所在圓的位置關(guān)系,并說明理由.
(3)設(shè)為直線上一點(diǎn),沿所在直線折疊矩形,若折疊后所在的直線與扇形所在的相切,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,點(diǎn)在邊上,,.點(diǎn)是線段上一動(dòng)點(diǎn),當(dāng)半徑為的與的一邊相切時(shí),的長(zhǎng)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定:[x]表示不大于x 的最整數(shù),(x) 表示不小于x的最小整數(shù),[x) 表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2,則下列說法正確的是__________(寫出所有正確說法).
①當(dāng)x=1.7時(shí),[x]+(x)+[x)=6;
②當(dāng)x=-2.1時(shí),[x]+(x)+[x)=-7;
③方程4[x]+3(x)+[x)=11的解為1<x<1.5;
④當(dāng)-1<x<1時(shí), 函數(shù)y=[x]+(x)+x 的圖像y=4x 的圖像有兩個(gè)交點(diǎn).
【答案】②③
【解析】分析:(1)根據(jù)題目中給的計(jì)算方法代入計(jì)算后判定即可;(2)根據(jù)題目中給的計(jì)算方法代入計(jì)算后判定即可;(3)根據(jù)題目中給的計(jì)算方法代入計(jì)算后判定即可;(4)結(jié)合x的取值范圍,分類討論,利用題目中給出的方法計(jì)算后判定即可.
詳解:
①當(dāng)x=1.7時(shí),
[x]+(x)+[x)
=[1.7]+(1.7)+[1.7)=1+2+2=5,故①錯(cuò)誤;
②當(dāng)x=﹣2.1時(shí),
[x]+(x)+[x)
=[﹣2.1]+(﹣2.1)+[﹣2.1)
=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正確;
③當(dāng)1<x<1.5時(shí),
4[x]+3(x)+[x)
=4×1+3×2+1
=4+6+1
=11,故③正確;
④∵﹣1<x<1時(shí),
∴當(dāng)﹣1<x<﹣0.5時(shí),y=[x]+(x)+x=﹣1+0+x=x﹣1,
當(dāng)﹣0.5<x<0時(shí),y=[x]+(x)+x=﹣1+0+x=x﹣1,
當(dāng)x=0時(shí),y=[x]+(x)+x=0+0+0=0,
當(dāng)0<x<0.5時(shí),y=[x]+(x)+x=0+1+x=x+1,
當(dāng)0.5<x<1時(shí),y=[x]+(x)+x=0+1+x=x+1,
∵y=4x,則x﹣1=4x時(shí),得x=;x+1=4x時(shí),得x=;當(dāng)x=0時(shí),y=4x=0,
∴當(dāng)﹣1<x<1時(shí),函數(shù)y=[x]+(x)+x的圖象與正比例函數(shù)y=4x的圖象有三個(gè)交點(diǎn),故④錯(cuò)誤,
故答案為:②③.
點(diǎn)睛:本題是閱讀理解題,前三問比較容易判定,根據(jù)題目所給的方法判定即可;第四問較難,結(jié)合x的取值范圍分情況討論即可.
【題型】填空題
【結(jié)束】
19
【題目】先化簡(jiǎn)再求值: ,其中, .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年11月5日,第二屆中國(guó)國(guó)際進(jìn)口博覽會(huì)(The 2nd China International lmport Expo)在上海國(guó)家會(huì)展中心開幕.本次進(jìn)博會(huì)將共建開放合作、創(chuàng)新共享的世界經(jīng)濟(jì),見證海納百川的中國(guó)胸襟,詮釋兼濟(jì)天下的責(zé)任擔(dān)當(dāng).小滕、小劉兩人想到四個(gè)國(guó)家館參觀:.中國(guó)館;.俄羅斯館;.法國(guó)館;.沙特阿拉伯館.他們各自在這四個(gè)國(guó)家館中任意選擇一個(gè)參觀,每個(gè)國(guó)家館被選擇的可能性相同.
(1)求小滕選擇.中國(guó)館的概率;
(2)用畫樹狀圖或列表的方法,求小滕和小劉恰好選擇同一國(guó)家館的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BM⊥AC于點(diǎn)M,CN⊥AB于點(diǎn)N,P為BC邊的中點(diǎn),連接PM、PN、MN,則下列結(jié)論:①PM=PN;②;③若∠ABC=60°,則△PMN為等邊三角形;④若∠ABC=45°,則BN=PC.其中正確的是( )
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com