【題目】如圖,直線(xiàn)AB,CD相交于點(diǎn)O,∠AOC=90°,
(1)比較∠AOD,∠EOB,∠AOE的大小.
(2)若∠EOC=28°,求∠EOB和∠EOD的度數(shù).
【答案】(1)∠AOE<∠AOD<∠BOE;(2)∠EOB=118°,∠EOD=152°.
【解析】
(1)由∠AOC=90°,得出∠AOD=90°,∠EOB>90°,∠AOE<90°,即可得出答案;
(2)由∠AOC=90°,可得∠BOC=90°,再通過(guò)∠EOB=∠BOC+∠EOC,∠EOC=28°,即可求出∠EOB;由∠EOD=180°-∠EOC,即可求出∠EOD.
解:(1)∵∠AOC=90°,直線(xiàn)AB,CD相交于點(diǎn)O,
∴∠AOC=∠AOD=∠BOD=∠BOC=90°,
∴∠AOD=90°,∠EOB>90°,∠AOE<90°,
即∠AOE<∠AOD<∠BOE.
(2)由∠AOC=90°,可得∠BOC=90°,
∵∠EOC=28°,
∴∠EOB=∠BOC+∠EOC=90°+28°=118°,
由已知可得∠EOD=180°-∠EOC=180°-28°=152°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于 x的一元二次方程 x 2 x p 1 0 有兩個(gè)實(shí)數(shù)根 x1、 x2 .
(1)求 p 的取值范圍;
(1)若,求 p 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠0)的圖象經(jīng)過(guò)點(diǎn)A(2,3).
(1)求這個(gè)函數(shù)的解析式;
(2)判斷點(diǎn)B(-1,6),C(3,2)是否在這個(gè)函數(shù)的圖象上,并說(shuō)明理由;
(3)當(dāng)-3<x<-1時(shí),求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明用木棒和硬幣拼成如圖所示的“列車(chē)”形狀,第個(gè)圖需要根木棒,枚硬幣,第個(gè)圖需要根木棒,枚硬幣,照這樣的方式擺下去,第個(gè)圖需要________根木棒,______枚硬幣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)對(duì)全校1200名學(xué)生進(jìn)行“校園安全知識(shí)”的教育活動(dòng),從1200名學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行測(cè)試,成績(jī)?cè)u(píng)定按從高分到低分排列分為, , , 四個(gè)等級(jí),繪制了圖①、圖②兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:
(1)求本次被抽查的學(xué)生共有多少名?
(2)將條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求扇形統(tǒng)計(jì)圖中“”所在的扇形圓心角的度數(shù);
(4)估計(jì)全!”等級(jí)的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】出租車(chē)司機(jī)王師傅從上午8:10~9:25在合肥市巢湖大堤環(huán)島路上一段東西方向路段上營(yíng)運(yùn),共連續(xù)運(yùn)載十批乘客.若規(guī)定向東為正,向西為負(fù),王師傅運(yùn)載十批乘客的里程如下:(單位:千米)+9,-7,+3,-8,+8,+5,-9,-4,+4,+3
(1)將最后一批乘客送到目的地時(shí),王師傅距離第一批乘客出發(fā)地的位置怎樣?距離多少千米?
(2)上午8:10~9:25王師傅開(kāi)車(chē)的平均速度是多少?
(3)若出租車(chē)的收費(fèi)標(biāo)準(zhǔn)為:起步價(jià)8元(不超過(guò)3千米),超過(guò)3千米,超過(guò)部分每千米1.5元.則王師傅在上午8:10~9:25一共收入多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=x+3與x軸、y軸分別相交于A、C兩點(diǎn),過(guò)點(diǎn)B(6,0),E(0,﹣6)的直線(xiàn)上有一點(diǎn)P,滿(mǎn)足∠PCA=135°.
(1)求證:四邊形ACPB是平行四邊形;
(2)求直線(xiàn)BE的解析式及點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知代數(shù)式,當(dāng)時(shí),該代數(shù)式的值為3.
(1)求c的值;
(2)已知:當(dāng)時(shí),該代數(shù)式的值為0.
①求:當(dāng)時(shí),該代數(shù)式的值;
②若,,,試比較a與d的大小,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),直線(xiàn)y=x+2分別與x軸、y軸交于點(diǎn)A、C.拋物線(xiàn)y=﹣+bx+c經(jīng)過(guò)點(diǎn)A與點(diǎn)C,且與x軸的另一個(gè)交點(diǎn)為點(diǎn)B.點(diǎn)D在該拋物線(xiàn)上,且位于直線(xiàn)AC的上方.
(1)求上述拋物線(xiàn)的表達(dá)式;
(2)聯(lián)結(jié)BC、BD,且BD交AC于點(diǎn)E,如果△ABE的面積與△ABC的面積之比為4:5,求∠DBA的余切值;
(3)過(guò)點(diǎn)D作DF⊥AC,垂足為點(diǎn)F,聯(lián)結(jié)CD.若△CFD與△AOC相似,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com