【題目】某中學(xué)對(duì)全校1200名學(xué)生進(jìn)行“校園安全知識(shí)”的教育活動(dòng),從1200名學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行測(cè)試,成績(jī)?cè)u(píng)定按從高分到低分排列分為 , , 四個(gè)等級(jí),繪制了圖①、圖②兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中所給信息解答下列問(wèn)題:

(1)求本次被抽查的學(xué)生共有多少名?

(2)將條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)求扇形統(tǒng)計(jì)圖中“”所在的扇形圓心角的度數(shù);

(4)估計(jì)全!”等級(jí)的學(xué)生有多少名?

【答案】(1)本次被抽查的學(xué)生共有60名;

(2)補(bǔ)充完整條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖見(jiàn)解析;

(3)扇形統(tǒng)計(jì)圖中“”所在的扇形圓心角的度數(shù);

(4)估計(jì)全校“”等級(jí)的學(xué)生有120名.

【解析】分析:(1)根據(jù)A等級(jí)有12人,占20%,即可求得抽查的總?cè)藬?shù);

(2)根據(jù)百分比的定義求得B、D所占的百分比,以及C、D類的人數(shù),即可解答;

(3)利用360°乘以對(duì)應(yīng)的百分比即可求解;(4)利用總?cè)藬?shù)1200乘以對(duì)應(yīng)的百分比.

本題解析:(1)12÷20%=60(名);

(2)B所占的百分比是: ×100%=40%,

D所占的百分比是:

1﹣20%﹣40%﹣30%=10%.

C的個(gè)數(shù)是:60×30%=18(名),

D的個(gè)數(shù)是:60×10%=6(名).

(3)360°×20%=72°;

(4)1200×10%=120(名).

答:估計(jì)全校“D”等級(jí)的學(xué)生有120(名).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】河上有一座橋孔為拋物線形的拱橋(如圖 ),水面寬 時(shí),水面離橋孔頂部 ,因降暴雨水面上升

(1)建立適當(dāng)?shù)淖鴺?biāo)系,并求暴雨后水面的寬;(結(jié)果保留根號(hào))

(2)一艘裝滿物資的小船,露出水面的部分高為 ,寬 (橫斷面如圖 所示),暴雨后這艘船能從這座拱橋下通過(guò)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【操作發(fā)現(xiàn)】如圖 1,△ABC 為等邊三角形,點(diǎn) D AB 邊上的一點(diǎn),∠DCE=30°,將線段 CD 繞點(diǎn) C 順時(shí)針旋轉(zhuǎn) 60°得到線段 CF,連接 AF、EF. 請(qǐng)直接 寫出下列結(jié)果:

① ∠EAF的度數(shù)為__________;

DEEF之間的數(shù)量關(guān)系為__________

【類比探究】如圖 2,△ABC 為等腰直角三角形,∠ACB=90°,點(diǎn) D AB 邊上的一點(diǎn)∠DCE=45°,將線段 CD 繞點(diǎn) C 順時(shí)針旋轉(zhuǎn) 90°得到線段 CF,連接 AF、EF.

①則∠EAF的度數(shù)為__________;

② 線段 AE,EDDB 之間有什么數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

【實(shí)際應(yīng)用】如圖 3,△ABC 是一個(gè)三角形的余料.小張同學(xué)量得∠ACB=120°,AC=BC, 他在邊 BC 上取了 DE 兩點(diǎn),并量得∠BCD=15°、∠DCE=60°,這樣 CD、CE 將△

ABC 分成三個(gè)小三角形,請(qǐng)求△BCD、△DCE、△ACE 這三個(gè)三角形的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小華思考解決如下問(wèn)題:

原題:如圖1,點(diǎn)PQ分別在菱形ABCD的邊BC,CD上,∠PAQ=∠B,求證:APAQ

1)小華進(jìn)行探索,若將點(diǎn)P,Q的位置特殊化:把∠PAQ繞點(diǎn)A旋轉(zhuǎn)得到∠EAF,使AEBC,點(diǎn)E、F分別在邊BC、CD上,如圖2.此時(shí)她證明了AEAF,請(qǐng)你證明;

2)由以上(1)的啟發(fā),在原題中,添加輔助線:如圖3,作AEBC,AFCD,垂足分別為EF.請(qǐng)你繼續(xù)完成原題的證明;

3)如果在原題中添加條件:AB4,∠B60°,如圖1,求四邊形APCQ的周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在四邊形ABCD中,ABCD,E,F(xiàn)為對(duì)角線AC上兩點(diǎn),且AE=CF,DFBE,AC平分BAD.求證:四邊形ABCD為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB,CD相交于點(diǎn)O,∠AOC=90°,

(1)比較∠AOD,∠EOB,∠AOE的大小.

(2)若∠EOC=28°,求∠EOB和∠EOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AC=BC,點(diǎn)OAB上,經(jīng)過(guò)點(diǎn)A的⊙OBC相切于點(diǎn)D,交AB于點(diǎn)E

1)求證:AD平分∠BAC;

2)若CD=1,求圖中陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點(diǎn)A(3,1),且過(guò)點(diǎn)B(0,﹣2).

(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

(2)如果點(diǎn)P是x軸上一點(diǎn),且△ABP的面積是3,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)A(1,0),B(4,1),C(4,3),反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)D,點(diǎn)P是一次函數(shù)y=mx+3﹣4m(m≠0)的圖象與該反比例函數(shù)圖象的一個(gè)公共點(diǎn);

(1)求反比例函數(shù)的解析式;

(2)通過(guò)計(jì)算說(shuō)明一次函數(shù)y=mx+3﹣4m的圖象一定過(guò)點(diǎn)C;

(3)對(duì)于一次函數(shù)y=mx+3﹣4m(m≠0),當(dāng)y隨x的增大而增大時(shí),確定點(diǎn)P的橫坐標(biāo)的取值范圍,(不必寫過(guò)程)

查看答案和解析>>

同步練習(xí)冊(cè)答案