【題目】如圖,△ABC內(nèi)接于⊙O,BC是⊙O的直徑,弦AF交BC于點(diǎn)E,∠CAF=2∠B.
(1)求證:AE=AC;
(2)若⊙O的半徑為4,E是OB的中點(diǎn),求EF的長(zhǎng).
【答案】(1)見解析;(2)EF=
【解析】
(1)過A作AH⊥CE于H,結(jié)合直徑所對(duì)的圓周角是直角,得到∠ACB的余角∠CAH=∠ABC,結(jié)合∠CAF=2∠ABC,得到∠EAH=∠CAH,依據(jù)ASA證明△ACH≌△AEH,依據(jù)全等的性質(zhì)即可;
(2)連接BF,先根據(jù)半徑是4,及E是OB的中點(diǎn),求出CE、BE;然后利用第(1)問∠CAH=∠ABC,及公共角∠C證明△CAH∽△CBA,依據(jù)相似的性質(zhì)求得AC、AE,再依據(jù)同弧所對(duì)的圓周角相等,得到證明△CAE∽△FBE的條件,依據(jù)相似的性質(zhì)即可求得EF的長(zhǎng).
(1)證明:過A作AH⊥CE于H,
又∵BC是⊙O的直徑,
∴∠CAB=∠AHC=∠AHE=90°,
∴∠ACB+∠ABC=∠ACB+∠CAH=90°,
∴∠CAH=∠ABC,
又∵∠CAF=2∠ABC,
∴∠EAH=∠CAH,
又∵AH=AH,
∴△ACH≌△AEH(ASA),
∴AC=AE;
(2)解:連接BF,
∵⊙O的半徑為4,
∴BC=8,
∵E是OB的中點(diǎn),
∴BE=OE=2,
∴CE=6,
∴CH=CE=3,
∵∠CAH=∠ABC,∠C=∠C,
∴△CAH∽△CBA,
∴,
∴AC2=CHCB=3×8=24,
∴AE=AC=2,
∵∠F=∠C,∠FBE=∠CAE,
∴△CAE∽△FBE,
∴,
∴,
∴EF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】模具廠計(jì)劃生產(chǎn)面積為4,周長(zhǎng)為m的矩形模具.對(duì)于m的取值范圍,小亮已經(jīng)能用“代數(shù)”的方法解決,現(xiàn)在他又嘗試從“圖形”的角度進(jìn)行探究,過程如下:
(1)建立函數(shù)模型
設(shè)矩形相鄰兩邊的長(zhǎng)分別為x,y,由矩形的面積為4,得,即;由周長(zhǎng)為m,得,即.滿足要求的應(yīng)是兩個(gè)函數(shù)圖象在第 象限內(nèi)交點(diǎn)的坐標(biāo).
(2)畫出函數(shù)圖象
函數(shù)的圖象如圖所示,而函數(shù)的圖象可由直線平移得到.請(qǐng)?jiān)谕恢苯亲鴺?biāo)系中直接畫出直線.
(3)平移直線,觀察函數(shù)圖象
①當(dāng)直線平移到與函數(shù)的圖象有唯一交點(diǎn)時(shí),周長(zhǎng)m的值為 ;
②在直線平移過程中,交點(diǎn)個(gè)數(shù)還有哪些情況?請(qǐng)寫出交點(diǎn)個(gè)數(shù)及對(duì)應(yīng)的周長(zhǎng)m的取值范圍.
(4)得出結(jié)論
若能生產(chǎn)出面積為4的矩形模具,則周長(zhǎng)m的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn),,點(diǎn)在以為圓心,為半徑的⊙上,是的中點(diǎn),若長(zhǎng)的最大值為,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,切于點(diǎn),點(diǎn)是上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與兩點(diǎn)重合),連接,過點(diǎn)作交于點(diǎn),過點(diǎn)作于點(diǎn),交的延長(zhǎng)線于點(diǎn),連接,.
(1)求證:.
(2)若直徑的長(zhǎng)為12.
①當(dāng)________時(shí),四邊形為正方形;
②當(dāng)________時(shí),四邊形為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)與一次函數(shù)y=k(x+1)(其中x為自變量,k為常數(shù))在同一坐標(biāo)系中的圖象可能是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的對(duì)稱軸為直線x=﹣1,部分圖象如圖所示,下列判斷中:
①abc>0;
②b2﹣4ac>0;
③9a﹣3b+c=0;
④若點(diǎn)(﹣0.5,y1),(﹣2,y2)均在拋物線上,則y1>y2;
⑤5a﹣2b+c<0.
其中正確的個(gè)數(shù)有( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、CD為兩個(gè)建筑物,建筑物AB的高度為60米,從建筑物AB的頂點(diǎn)A點(diǎn)測(cè)得建筑物CD的頂點(diǎn)C點(diǎn)的俯角∠EAC為30°,測(cè)得建筑物CD的底部D點(diǎn)的俯角∠EAD為45°.
(1)求兩建筑物底部之間水平距離BD的長(zhǎng)度;
(2)求建筑物CD的高度(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的頂點(diǎn)A,B分別在y軸、x軸上,OA=2,OB=1,斜邊AC∥x軸.若反比例函數(shù)y(k>0,x>0)的圖象經(jīng)過AC的中點(diǎn)D,則k的值為( )
A.4B.5C.6D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖13-1至圖13-5,⊙O均作無滑動(dòng)滾動(dòng),⊙O1、⊙O2、⊙O3、⊙O4均表示⊙O與線段AB或BC相切于端點(diǎn)時(shí)刻的位置,⊙O的周長(zhǎng)為c.
閱讀理解:
(1)如圖13-1,⊙O從⊙O1的位置出發(fā),沿AB滾動(dòng)到⊙O2的位置,當(dāng)AB=c時(shí),⊙O恰好自轉(zhuǎn)1周.
(2)如圖13-2,∠ABC相鄰的補(bǔ)角是n°,⊙O在∠ABC外部沿A-B-C滾動(dòng),在點(diǎn)B處,必須由⊙O1的位置旋轉(zhuǎn)到⊙O2的位置,⊙O繞點(diǎn)B旋轉(zhuǎn)的角∠O1BO2 = n°,⊙O在點(diǎn)B處自轉(zhuǎn)周.
實(shí)踐應(yīng)用:
(1)在閱讀理解的(1)中,若AB=2c,則⊙O自轉(zhuǎn) 周;若AB=l,則⊙O自轉(zhuǎn) 周.在閱讀理解的(2)中,若∠ABC= 120°,則⊙O在點(diǎn)B處自轉(zhuǎn) 周;若∠ABC= 60°,則⊙O在點(diǎn)B處自轉(zhuǎn) 周.
(2)如圖13-3,∠ABC=90°,AB=BC=c.⊙O從⊙O1的位置出發(fā),在∠ABC外部沿A-B-C滾動(dòng)到⊙O4的位置,⊙O自轉(zhuǎn) 周.
拓展聯(lián)想:
(1)如圖13-4,△ABC的周長(zhǎng)為l,⊙O從與AB相切于點(diǎn)D的位置出發(fā),在△ABC外部,按順時(shí)針方向沿三角形滾動(dòng),又回到與AB相切于點(diǎn)D的位置,⊙O自轉(zhuǎn)了多少周?請(qǐng)說明理由.
(2)如圖13-5,多邊形的周長(zhǎng)為l,⊙O從與某邊相切于點(diǎn)D的位置出發(fā),在多邊形外部,按順時(shí)針方向沿多邊形滾動(dòng),又回到與該邊相切于點(diǎn)D的位置,直接寫出⊙O自轉(zhuǎn)的周數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com