【題目】跳繩是大家喜聞樂見的一項體育運動,集體跳繩時,需要兩人同頻甩動繩子,當(dāng)繩子甩到最高處時,其形狀可近似看作拋物線.如圖是小明和小亮甩繩子到最高處時的示意圖,兩人拿繩子的手之間的距離為,離地面的高度為,以小明的手所在位置為原點,建立平面直角坐標(biāo)系.

1)當(dāng)身高為的小紅站在繩子的正下方,且距小明拿繩子手的右側(cè)處時,繩子剛好通過小紅的頭頂,求繩子所對應(yīng)的拋物線的表達(dá)式;

2)若身高為的小麗也站在繩子的正下方.

①當(dāng)小麗在距小亮拿繩子手的左側(cè)處時,繩子能碰到小麗的頭嗎?請說明理由;

③設(shè)小麗與小亮拿繩子手之間的水平距離為,為保證繩子不碰到小麗的頭頂,求的取值范圍.(參考數(shù)據(jù):3.16

【答案】1;(2)①繩子能碰到小麗的頭,見解析;②

【解析】

1)因為拋物線過原點,可設(shè)拋物線的解析式為:y=ax2+bxa≠0),把小亮拿繩子的手的坐標(biāo)(4,0),以及小紅頭頂坐標(biāo)(1,1.5-1)代入,得到三元一次方程組,解方程組便可;
2)①由自變量的值求出函數(shù)值,再比較便可;
②由y=0.65時求出其自變量的值,便可確定d的取值范圍.

1)設(shè)拋物線的解析式為:,

,

∴拋物線經(jīng)過點

,

解得,,

∴繩子對應(yīng)的拋物線的解析式為:;

2)①繩子能碰到小麗的頭.理由如下:

∵小麗在距小亮拿繩子手的左側(cè)處,

∴小麗距原點,

∴當(dāng)時,,

∴繩子能碰到小麗的頭;

②∵,

∴當(dāng)時,

,

解得,

3.16,

,

,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=5cm,BAC=60°,動點M從點B出發(fā),在BA邊上以每秒2cm的速度向點A勻速運動,同時動點N從點C出發(fā),在CB邊上以每秒cm的速度向點B勻速運動,設(shè)運動時間為t秒(0≤t≤5),連接MN.

(1)若BM=BN,求t的值;

(2)若△MBN與△ABC相似,求t的值;

(3)當(dāng)t為何值時,四邊形ACNM的面積最。坎⑶蟪鲎钚≈担

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過定點A

1)直接寫出A點坐標(biāo);

2)直線y=t (t<6)與拋物線交于BC兩點(BC 的左邊),過點AADBC于點D,是否存在t的值,使得對于任意的m,∠DAC=ABD恒成立,若存在,請求t的值;若不存在,請說明理由.

3)如圖,當(dāng)m=1時,直線y=2x交對稱軸于點E,在直線OE的右側(cè)作∠EOP交拋物線于點P,使得tanEOP=,已知x軸上有一個點M(t,0) EM+PM是否存在最小值?若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,AC=6,BC=8,動點P從點A開始沿邊AC向點C以1個單位長度的速度運動,動點Q從點C開始沿邊CB向點B以每秒2個單位長度的速度運動,過點P作PD∥BC,交AB于點D,連接PQ分別從點A、C同時出發(fā),當(dāng)其中一點到達(dá)端點時,另一點也隨之停止運動,設(shè)運動時間為t秒(t≥0).

(1)直接用含t的代數(shù)式分別表示:QB=   ,PD=   

(2)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變Q的速度(勻速運動),使四邊形PDBQ在某一時刻為菱形,求點Q的速度;

(3)如圖2,在整個運動過程中,求出線段PQ中點M所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工程對承接了60萬平方米的綠化工程,由于情況有變,……,設(shè)原計劃每天綠化的面積為萬平方米,列方程為,根據(jù)方程可知省略的部分是( )

A.實際工作時每天的工作效率比原計劃提高了20%,結(jié)果提前30天完成了這一任務(wù)

B.實際工作時每天的工作效率比原計劃提高了20%,結(jié)果延誤30天完成了這一任務(wù)

C.實際工作時每天的工作效率比原計劃降低了20%,結(jié)果延誤30天完成了這一任務(wù)

D.實際工作時每天的工作效率比原計劃降低了20%,結(jié)果提前30天完成了這一任務(wù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近幾年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進行了抽樣調(diào)查,調(diào)查結(jié)果顯示支付方式有:微信、支付寶、現(xiàn)金、其他.該小組對某超市一天內(nèi)購買者的支付方式進行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

1)本次一共調(diào)查了 名購買者?

2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中,種支付方式所對應(yīng)的圓心角為 度;

3)若該超市這一周內(nèi)有2000名購買者,請你估計使用兩種支付方式的購買者共有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,ABC=120°,將菱形折疊,使點A恰好落在對角線BD上的點G處(不與B、D重合),折痕為EF,若DG=2,BG=6,則BE的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形OABC在直角坐標(biāo)系中的位置如圖所示,A、C兩點的坐標(biāo)分別為A(60)、C(0,3),直線y=xBC邊相交于D

1)求點D的坐標(biāo):

2)若拋物線y=axbx經(jīng)過D、A兩點,試確定此拋物線的表達(dá)式:

3Px軸上方(2)題中的拋物線上一點,求△POA面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案