【題目】如圖,在矩形ABCD中有對(duì)角線AC與BD相等,已知AB=4,BC=3,則有AB2+BC2=AC2,矩形在直線MN上繞其右下角的頂點(diǎn)B向右旋轉(zhuǎn)90°至圖①位置,再繞右下角的頂點(diǎn)繼續(xù)向右旋轉(zhuǎn)至圖②位置……依次類推,則:
(1)AC=__________.
(2)這樣連續(xù)旋轉(zhuǎn)2019次后,頂點(diǎn)B在整個(gè)旋轉(zhuǎn)過程中所經(jīng)過的路程之和是________.
【答案】5 3028π
【解析】
首先求得每一次轉(zhuǎn)動(dòng)的路線的長(zhǎng),發(fā)現(xiàn)每4次循環(huán),找到規(guī)律然后計(jì)算即可.
(1)∵AB2+BC2=AC2, AB=4,BC=3,
∴AC2= 42+32=25,
∴AC=5;
(2)轉(zhuǎn)動(dòng)一次B的路線長(zhǎng)是:0,轉(zhuǎn)動(dòng)第二次的路線長(zhǎng)是:π,轉(zhuǎn)動(dòng)第三次的路線長(zhǎng)是:π,轉(zhuǎn)動(dòng)第四次的路線長(zhǎng)是:=2π,以此類推,每四次循環(huán),
2019÷4=504余3,
頂點(diǎn)B轉(zhuǎn)動(dòng)四次經(jīng)過的路線長(zhǎng)為:0+++ 2π=6π,
連續(xù)旋轉(zhuǎn)2019次經(jīng)過的路線長(zhǎng)為:6π×504+0++=3028π.
故答案為:(1)5;(2)3028π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)8+(-)-5-(-0.25); (2)|-|÷(-)×(-4)2.
(3)(-+)×(-30); (4)(-1)3-(1-)÷3×[2-(-3)2].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,DF平分∠ADC,交BC于點(diǎn)F,BE平分∠ABC,交AD于點(diǎn)E.
(1)求證:四邊形BFDE是平行四邊形;
(2)若∠AEB=68°,求∠C.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在Rt△ABC中,∠ACB=90°,D、E分別是AB、AC的中點(diǎn),F是BC延長(zhǎng)線上的一點(diǎn),且EF∥DC.(1)求證:四邊形CDEF是平行四邊形;(2)若EF=2cm,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O是直線AB上一點(diǎn),∠AOC=45°36’,OD平分∠BOC,求∠AOD的度數(shù).完成下列推理過程:
解:由題意可知,∠AOB是平角,
∠AOB= +∠BOC
因?yàn)椤?/span>AOC=45°36′
所以∠BOC= ° ′
又因?yàn)?/span>OD平分∠BOC
∴∠COD=∠BOC= ° ′
∴∠AOD=∠ +∠ = ° ′
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)解答過程填空(理由或數(shù)學(xué)式) :如圖,∠DAF=∠F, ∠B=∠D,那么AB與DC平行嗎?
解:AB∥DC
∵∠DAF=∠F( ),
∴AD∥BF( )
∴∠D=∠DCF( )
∵∠B=∠D(已知),
∴∠ =∠DCF( )
∴AB∥DC( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如果點(diǎn)、點(diǎn)為某個(gè)菱形的一組對(duì)角的頂點(diǎn),且點(diǎn)、在直線上,那么稱該菱形為點(diǎn)、的“極好菱形”,如圖為點(diǎn)、的“極好菱形”的一個(gè)示意圖。
(1)點(diǎn),,中,能夠成為點(diǎn)、的“極好菱形”的頂點(diǎn)的是_______.
(2)若點(diǎn)、的“極好菱形”為正方形,則這個(gè)正方形另外兩個(gè)頂點(diǎn)的坐標(biāo)是________.
(3)如果四邊形是點(diǎn)、的“極好菱形”
①當(dāng)點(diǎn)的坐標(biāo)為時(shí),求四邊形的面積
②當(dāng)四邊形的面積為,且與直線有公共點(diǎn)時(shí),直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),邊OA的長(zhǎng)度為8,對(duì)角線AC=10,拋物線y=x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D.
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達(dá)式并求出S最大時(shí)的m值;
②在S最大的情況下,在拋物線y=x2+bx+c的對(duì)稱軸上,若存在點(diǎn)F,使△DFQ為直角三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com