【題目】
(1)計(jì)算:
(2)解方程:

【答案】
(1)解:原式=﹣ +2( ﹣1)×( +1)

=﹣ +2

=1 ;


(2)解:去分母得:x(x+2)﹣(x﹣1)(x+2)=3,

去括號得:x2+2x﹣x2﹣x+2=3,

解得:x=1,

經(jīng)檢驗(yàn)x=1是增根,原分式方程無解


【解析】(1)原式第一項(xiàng)利用負(fù)指數(shù)冪法則計(jì)算,第二項(xiàng)利用特殊角的三角函數(shù)值及絕對值的代數(shù)意義化簡計(jì)算即可得到結(jié)果;(2)分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解整數(shù)指數(shù)冪的運(yùn)算性質(zhì)的相關(guān)知識,掌握aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)),以及對二次根式的混合運(yùn)算的理解,了解二次根式的混合運(yùn)算與實(shí)數(shù)中的運(yùn)算順序一樣,先乘方,再乘除,最后加減,有括號的先算括號里的(或先去括號).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.

(1)求∠BOD的度數(shù);(2)OE是否平分∠BOC?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)C按如圖方式疊放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):

(1)①若∠DCE=45°,則∠ACB的度數(shù)為  ;

②若∠ACB=140°,求∠DCE的度數(shù);

(2)由(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說明理由.

(3)當(dāng)∠ACE<180°且點(diǎn)E在直線AC的上方時,這兩塊三角尺是否存在一組邊互相平行?若存在,請直接寫出∠ACE角度所有可能的值(不必說明理由);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)“▲”、“●”、“■”分別表示三種不同的物體,現(xiàn)用天平秤兩次,情況如圖所示,那么▲、●、■這三種物體按質(zhì)量從大到小排列應(yīng)為(
A.■、●、▲
B.▲、■、●
C.■、▲、●
D.●、▲、■

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把所有正奇數(shù)從小到大排列,并按如下規(guī)律分組:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,現(xiàn)用等式AM=(i,j)表示正奇數(shù)M是第i組第j個數(shù)(從左往右數(shù)),如A7=(2,3),則A2013=( )
A.(45,77)
B.(45,39)
C.(32,46)
D.(32,23)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是半圓O上的一點(diǎn),AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于E,連接CE.
(1)判斷CD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若E是 的中點(diǎn),⊙O的半徑為1,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)C的坐標(biāo)為(0,﹣2),交x軸于A、B兩點(diǎn),其中A(﹣1,0),直線l:x=m(m>1)與x軸交于D.

(1)求二次函數(shù)的解析式和B的坐標(biāo);
(2)在直線l上找點(diǎn)P(P在第一象限),使得以P、D、B為頂點(diǎn)的三角形與以B、C、O為頂點(diǎn)的三角形相似,求點(diǎn)P的坐標(biāo)(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,在拋物線上是否存在第一象限內(nèi)的點(diǎn)Q,使△BPQ是以P為直角頂點(diǎn)的等腰直角三角形?如果存在,請求出點(diǎn)Q的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某物體從P點(diǎn)運(yùn)動到Q點(diǎn)所用時間為7秒,其運(yùn)動速度v(米每秒)關(guān)于時間t(秒)的函數(shù)關(guān)系如圖所示.某學(xué)習(xí)小組經(jīng)過探究發(fā)現(xiàn):該物體前進(jìn)3秒運(yùn)動的路程在數(shù)值上等于矩形AODB的面積.由物理學(xué)知識還可知:該物體前t(3<t≤7)秒運(yùn)動的路程在數(shù)值上等于矩形AODB的面積與梯形BDNM的面積之和. 根據(jù)以上信息,完成下列問題:

(1)當(dāng)3<t≤7時,用含t的式子表示v;
(2)分別求該物體在0≤t≤3和3<t≤7時,運(yùn)動的路程s(米)關(guān)于時間t(秒)的函數(shù)關(guān)系式;并求該物體從P點(diǎn)運(yùn)動到Q總路程的 時所用的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解

,即23

的整數(shù)部分為2,小數(shù)部分為2,

112

1的整數(shù)部分為1

1的小數(shù)部分為2

解決問題:已知:a3的整數(shù)部分,b3的小數(shù)部分,

求:(1a,b的值;

2)(﹣a3+b+42的平方根.

查看答案和解析>>

同步練習(xí)冊答案