【題目】(1)解方程:x2﹣5x﹣6=0
(2)如圖,△ABC中∠C=90°
①將△ABC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后的三角形△AB′C′;
②若BC=3,AC=4,B點(diǎn)旋轉(zhuǎn)后的對(duì)應(yīng)是B′,求 的長(zhǎng)
【答案】(1)x1=6,x2=﹣1.(2).
【解析】
(1)根據(jù)十字相乘法可求出x的兩個(gè)值.
(2)①△ABC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,畫(huà)圖時(shí)注意A點(diǎn)保持不變,AB邊沿點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到,AC邊沿點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到,連接,△AB′C′即為所求.
②根據(jù)勾股定理可求出斜邊AB的長(zhǎng)度,由于圓心角,根據(jù)弧長(zhǎng)公式可求出的長(zhǎng).
解:(1)解方程:x2﹣5x﹣6=0
(x﹣6)(x+1)=0
x1=6,x2=﹣1.
(2)①如圖所示:
△AB′C′即為旋轉(zhuǎn)后的三角形;
②△ABC中,∠C=90°
根據(jù)勾股定理,得
,
旋轉(zhuǎn)角為90°,即∠BAB′=90°.
∴.
答:的長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)轉(zhuǎn)盤(pán).轉(zhuǎn)盤(pán)分成8個(gè)相同的圖形,顏色分為紅、綠、黃三種.指針的位置固定,轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)后任其茲有停止,其中的某個(gè)扇形會(huì)恰好停在指針?biāo)傅奈恢?/span>(指針指向兩個(gè)圖形的交線時(shí),當(dāng)作指向右邊的圖形).求下列事件的概率:
(1)指針指向紅色;
(2)指針指向黃色或綠色。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知雙曲線y1=與直線y2=ax+b交于點(diǎn)A(﹣4,1)和點(diǎn)B(m,﹣4).
(1)求雙曲線和直線的解析式;
(2)直接寫(xiě)出線段AB的長(zhǎng)和y1>y2時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB和拋物線的交點(diǎn)是A(0,﹣3),B(5,9),已知拋物線的頂點(diǎn)D的橫坐標(biāo)是2.
(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);
(2)在x軸上是否存在一點(diǎn)C,與A,B組成等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不在,請(qǐng)說(shuō)明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們將能完全覆蓋某平面圖形的最小圓稱為該平面圖形的最小覆蓋圓.例如線段AB的最小覆蓋圓就是以線段AB為直徑的圓.
(1)請(qǐng)分別作出下圖中兩個(gè)三角形的最小覆蓋圓(要求用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);
(2)探究三角形的最小覆蓋圓有何規(guī)律?請(qǐng)寫(xiě)出你所得到的結(jié)論(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AM和BN是⊙O的兩條切線,E為⊙O上一點(diǎn),過(guò)點(diǎn)E作直線DC分別交AM,BN于點(diǎn)D,C,且CB=CE.
(1)求證:DA=DE;
(2)若AB=6,CD=4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知頂點(diǎn)為的拋物線與軸交于,兩點(diǎn),直線過(guò)頂點(diǎn)和點(diǎn).
(1)求的值;
(2)求函數(shù)的解析式;
(3)拋物線上是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道:任何有理數(shù)的平方都是一個(gè)非負(fù)數(shù),即對(duì)于任何有理數(shù)a,都有 成立,所以,當(dāng)時(shí),有最小值0.
(應(yīng)用):(1)代數(shù)式有最小值時(shí), ;
(2)代數(shù)式的最小值是 ;
(探究):求代數(shù)式的最小值,小明是這樣做的:
∴當(dāng)時(shí),代數(shù)式有最小值,最小值為5.
(3)請(qǐng)你參照小明的方法,求代數(shù)式的最小值,并求此時(shí)a的值.
(拓展):(4)若,直接寫(xiě)出y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,A(t,0),B(t+2,0).對(duì)于線段AB和點(diǎn)P給出如下定義:當(dāng)∠APB=90°時(shí),稱點(diǎn)P為線段AB的“直角點(diǎn)”.
(Ⅰ)當(dāng)t=﹣1時(shí),點(diǎn)C(0,1),判斷點(diǎn)C是否為線段AB的“直角點(diǎn)”,并說(shuō)明理由;
(Ⅱ)已知拋物線y=ax2+bx(a>0,b<0)的頂點(diǎn)為M,與x軸交于A(t,0),B(t+2,0),若點(diǎn)M為線段AB的“直角點(diǎn)”,求出此拋物線的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com