【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB90°,反比例函數(shù)y在第一象限的圖象經(jīng)過(guò)點(diǎn)B,則OA2AB2_____

【答案】12

【解析】

設(shè)OCaBDb,則點(diǎn)A的坐標(biāo)為(aa),點(diǎn)B的坐標(biāo)為(a+bab),利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出a2b26,再由勾股定理可得出OA2AB22a22b212,此題得解.

解:設(shè)OCa,BDb,

∵△OAC和△BAD都是等腰直角三角形

∴點(diǎn)A的坐標(biāo)為(aa),點(diǎn)B的坐標(biāo)為(a+b,ab).

又∵∠ACO=∠ADB90°

∵反比例函數(shù)在第一象限的圖象經(jīng)過(guò)點(diǎn)B

∴(a+b)(ab)=6,即a2b26

OA2AB22a22b22a2b2)=12

故答案為:12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在ABC紙板中,AC4,BC8AB11PBC上一點(diǎn),沿過(guò)點(diǎn)P的直線剪下一個(gè)與ABC相似的小三角形紙板,如果有4種不同的剪法,那么CP長(zhǎng)的取值范圍是(  )

A.0CP≤1B.0CP≤2C.1≤CP8D.2≤CP8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,把點(diǎn)先向右平移1個(gè)單位,再向上平移2個(gè)單位的平移稱為一次斜平移.已知點(diǎn)A1,0),點(diǎn)A經(jīng)過(guò)n次斜平移得到點(diǎn)B,點(diǎn)M是線段AB的中點(diǎn).

1)當(dāng)n=3時(shí),點(diǎn)B的坐標(biāo)是 ,點(diǎn)M的坐標(biāo)是 ;

2)如圖1,當(dāng)點(diǎn)M落在的圖像上,求n的值;

3)如圖2,當(dāng)點(diǎn)M落在直線,點(diǎn)C是點(diǎn)B關(guān)于直線的對(duì)稱點(diǎn),BC與直線相交于點(diǎn)N

①求證:△ABC是直角三角形

②當(dāng)點(diǎn)C的坐標(biāo)為(53)時(shí),求MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以Cx0,y0)為圓心半徑為r的圓的標(biāo)準(zhǔn)方程是(xx02+yy02r2.例如,在平面直角坐標(biāo)系中,⊙C的圓心C2,3),點(diǎn)M3,5)是圓上一點(diǎn),如圖,過(guò)點(diǎn)C、點(diǎn)M分別作x軸、y軸的平行線,交于點(diǎn)H,在RtMCH中,由勾股定理可得:r2MC2CH2+MH21+45,則圓C的標(biāo)準(zhǔn)方程是(x22+y325.那么以點(diǎn)(﹣3,4)為圓心,過(guò)點(diǎn)(﹣2,﹣1)的圓的標(biāo)準(zhǔn)方程是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一只紙箱中裝有除顏色外完全相同的紅色、黃色、藍(lán)色乒乓球共100個(gè).從紙箱中任意摸出一球,摸到紅色球、黃色球的概率分別是0.2、0.3

1)試求出紙箱中藍(lán)色球的個(gè)數(shù);

2)小明向紙箱中再放進(jìn)紅色球若干個(gè),小麗為了估計(jì)放入的紅球的個(gè)數(shù),她將箱子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回箱子中,多次重復(fù)上述過(guò)程后,她發(fā)現(xiàn)摸到紅球的頻率在0.5附近波動(dòng),請(qǐng)據(jù)此估計(jì)小明放入的紅球的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】名聞遐邇的秦順明前茶,成本每斤500元,某茶場(chǎng)今年春天試營(yíng)銷,每周的銷售量y(斤)與銷售單價(jià)x(元/斤)滿足的關(guān)系如下表:

x(元/斤)

550

600

650

680

700

y(斤)

450

400

350

320

300

1)請(qǐng)根據(jù)表中的數(shù)據(jù)猜想并寫出yx之間的函數(shù)關(guān)系式;

2)若銷售每斤茶葉獲利不能超過(guò)40%,該茶場(chǎng)每周獲利w元,試寫wx之間的函數(shù)關(guān)系式,并求出茶場(chǎng)每周的最大利潤(rùn).

3)若該茶場(chǎng)每周獲利不少于40000元,試確定銷售單價(jià)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究:如圖①,點(diǎn)A在直線MN上,點(diǎn)B在直線MN外,連結(jié)AB,過(guò)線段AB的中點(diǎn)PPCMN,交∠MAB的平分線AD于點(diǎn)C,連結(jié)BC,求證:BCAD

應(yīng)用:如圖②,點(diǎn)B在∠MAN內(nèi)部,連結(jié)AB,過(guò)線段AB的中點(diǎn)PPCAM,交∠MAB的平分線AD于點(diǎn)C;作PEAN,交∠NAB的平分線AF于點(diǎn)E,連結(jié)BC、BE.若∠MAN150°,則∠CBE的大小為______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形分別切于點(diǎn),連接并延長(zhǎng)交于點(diǎn),連接剛好平行,若,則的直徑為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中作圖:①分別以點(diǎn)B,C為圓心,BC長(zhǎng)為半徑畫弧,分別交AD于點(diǎn)H,G;②分別以點(diǎn)B,C為圓心,大于BC的一半長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)E,F;③作直線EF,交AD于點(diǎn)P.下列結(jié)論不一定成立的是(

A.BCBHB.CGAD

C.PBPCD.GH2AB

查看答案和解析>>

同步練習(xí)冊(cè)答案