【題目】如圖,在四邊形ABCD中,AC是四邊形的對(duì)角線,∠CAD=30°,過點(diǎn)CCEAB于點(diǎn)E,∠B=2BAC,∠ADC﹣∠BAC=90°,若AB=20CD=16,則BE的長為____

【答案】2

【解析】

EA上截取EFEB,連接CF,作FMACM,作CNADN,由線段垂直平分線的性質(zhì)得出CBCF,由等腰三角形的性質(zhì)得出∠CFB=∠B2BAC,證出∠FCA=∠BAC,得出AFCF,由等腰三角形的性質(zhì)得出CMAMAC,由直角三角形的性質(zhì)得出CNAC,得出AMCN,證出∠BAC=∠DCN,證明△AFM≌△CDNASA),得出AFCD16,進(jìn)而得出答案.

EA上截取EF=EB,連接CF,作FMACM,作CNADN,如圖所示:

CEAB,

CB=CF,

∴∠CFB=B=2BAC

∵∠CFB=FCA+BAC,

∴∠FCA=BAC,

AF=CF

FMAC,

CM=AM=AC

CNAD,∠CAD=30,

CN=AC

AM=CN

∵∠ADC﹣∠BAC=90,

∴∠ADC=90+BAC

∵∠ADC=N+DCN=90+DCN,

∴∠BAC=DCN

在△AFM和△CDN中,,

∴△AFM≌△CDNASA),

AF=CD=16,

BF=ABAF=2016=4

BE=BF=2

故答案為:2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對(duì)稱軸為x=1,經(jīng)過點(diǎn)(-1,0),有下列結(jié)論:①abc0;②a+cb;③3a+c=0;④a+bmam+b)(其中m≠1)其中正確的結(jié)論有( 。

A. 1個(gè)

B. 2個(gè)

C. 3個(gè)

D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AC的表達(dá)式為yx8,點(diǎn)P從點(diǎn)A開始沿AO向點(diǎn)O1個(gè)單位/s的速度移動(dòng),點(diǎn)Q從點(diǎn)O開始沿OC向點(diǎn)C2個(gè)單位/s的速度移動(dòng).如果P,Q兩點(diǎn)分別從點(diǎn)A,O同時(shí)出發(fā),經(jīng)過幾秒能使PQO的面積為8個(gè)平方單位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+ca≠0)的圖象經(jīng)過M1,0)和N3,0)兩點(diǎn),且與y軸交于D0,3),直線l是拋物線的對(duì)稱軸.

1)求該拋物線的解析式.

2)若過點(diǎn)A﹣1,0)的直線AB與拋物線的對(duì)稱軸和x軸圍成的三角形面積為6,求此直線的解析式.

3)點(diǎn)P在拋物線的對(duì)稱軸上,⊙P與直線ABx軸都相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:y=kx和拋物線C:y=ax2+bx+1.

1當(dāng)k=1,b=1時(shí),拋物線C:y=ax2+bx+1的頂點(diǎn)在直線l:y=kx上,求a的值;

2若把直線l向上平移k2+1個(gè)單位長度得到直線r,則無論非零實(shí)數(shù)k取何值,直線r與拋物線C都只有一個(gè)交點(diǎn);

(i)求此拋物線的解析式;

(ii)P是此拋物線上任一點(diǎn),過點(diǎn)PPQy軸且與直線y=2交于點(diǎn)Q,O為原點(diǎn),

求證:OP=PQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)A(1,4)和點(diǎn)B(5,1)在平面直角坐標(biāo)系中的位置如圖所示:

(1)點(diǎn)A1、B1分別為點(diǎn)A、B關(guān)于y軸的對(duì)稱點(diǎn),請畫出四邊形AA1B1B,并寫出A1、B1的坐標(biāo);

(2)在(1)的條件下,畫一條過四邊形AA1B1B的一個(gè)頂點(diǎn)的線段,將四邊形AA1B1B分成兩個(gè)圖形,并且使分得的圖形中的一個(gè)是軸對(duì)稱圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,ABAC的垂直平分線的交點(diǎn)D恰好落在BC邊上

(1)判斷ABC的形狀

(2)若點(diǎn)A在線段DC的垂直平分線上,求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①②,銳角的正弦值和余弦值都隨著銳角的變化而變化.試探索隨著銳角度數(shù)的增大,它的正弦值和余弦值變化的規(guī)律.

(2)根據(jù)你探索到的規(guī)律,試比較18°,34°,50°,62°,88°這些銳角的正弦值的大小和余弦值的大小.

(3)比較大小(在橫線上填寫“<”“>”或“=”):

若α=45°,則sin α    cos α;

若α<45°,則sin α    cos α;

若α>45°,則sin α    cos α.

(4)利用互為余角的兩個(gè)角的正弦和余弦的關(guān)系,試比較下列正弦值和余弦值的大小:sin 10°,cos 30°,sin 50°,cos 70°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADABC的邊BC上的高,再添加下列條件中的某一個(gè)就能推出ABC是等腰三角形.BD=CD;②∠BAD=∠CAD;③AB+BDAC+CD; AB-BD=AC-CD;⑤∠BAD=∠ACD.可以添加的條件序號(hào)正確答案是( )

A.①②B.①②③C.①②③④D.①②③④⑤.

查看答案和解析>>

同步練習(xí)冊答案