【題目】某農(nóng)戶承包荒山若干畝種植臍橙,投資59000元種植臍橙果樹4000棵;今年臍橙總產(chǎn)量預測為60000千克,臍橙在市場上每千克售a元,在果園每千克售b元(b<a).該農(nóng)戶將水果拉到市場出售平均每天出售2000千克,需4人幫忙,每人每天付工資100元,農(nóng)用車運費及其他各項稅費平均每天300元.
(1)分別用a,b表示兩種方式出售水果的收入?
(2)若a=2.5元,b=2元,且兩種出售水果方式都在相同的時間內(nèi)售完全部水果,請你通過計算說明選擇哪種出售方式較好?
(3)該農(nóng)戶加強果園管理,力爭到明年純收入達到84000元,而且該農(nóng)戶采用了(2)中較好的出售方式出售,那么純收入增長率是多少(純收入=總收入﹣總支出)?
【答案】(1)市場出售收入,果園出售收入=60000b;(2)選擇在市場上銷售更好;(3)純收入增長率=20%.
【解析】
(1)市場收入=售價-人工費用-農(nóng)用車費用及其他各項稅費;果園銷售收入=售價;
(2)將a、b的值代入計算,然后比較即可;
(3)先求出今年的純收入,再根據(jù)增長率定義列式計算即可得解.
解:(1)市場出售收入
果園出售收入=60000b;
(2)a=2.5元,b=2元時,
市場出售收入=60000a-21000=60000×2.5-21000=150000-21000=129000元,
果園出售收入=60000b=60000×2=120000元,
∵129 000>120 000,
∴選擇在市場上銷售更好;
(3)今年純收入=129 000-59 000=70 000,
∵明年純收入達到84000元,
∴純收入增長率=
科目:初中數(shù)學 來源: 題型:
【題目】為鼓勵市民節(jié)約用電,小亮家所在地區(qū)規(guī)定:每戶居民如果一個月的用電量不超過度,那么這戶居民這個月只需交元電費;如果超過度,則這個月除了仍要交元的電費以外,超過的部分還要按每度元交電費.已知小亮家月份用電度,交電費元;月份用電度,交電費元.
(1)請直接寫出小亮家月份超過度部分的用電量(用含的代數(shù)式表示);
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售一種牛奶,進價為每箱24元,規(guī)定售價不低于進價.現(xiàn)在的售價為每箱36元,每月可銷售60箱.市場調(diào)查發(fā)現(xiàn):若這種牛奶的售價每降價1元,則每月的銷量將增加10箱,設每箱牛奶降價x元(x為正整數(shù)),每月的銷量為y箱.
(1)寫出y與x中間的函數(shù)關(guān)系式和自變量的取值范圍;
(2)超市如何定價,才能使每月銷售牛奶的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點.若點D為BC邊的中點,點M為線段EF上一動點,則△CDM周長的最小值為( 。
A.6B.8C.10D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD是⊙O的切線,B為切點,連接DO與⊙O交于點C,AB為⊙O的直徑,連接CA,若∠D=30°,⊙O的半徑為4.
(1) 求∠BAC的大;
(2) 求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖(1)在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.求證:DE=BD+CE;
(2)如圖(2)將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察表格:根據(jù)表格解答下列問題:
(l) a=______,b=_____,c=_____;
(2) 在右圖的直角坐標系中畫出函數(shù)y=ax2+bx+c的圖象,并根據(jù)圖象,直接寫出當x取什么實數(shù)時,不等式ax2+bx+c > -3成立;
(3)該圖象與x軸兩交點從左到右依次分別為A、B,與y軸交點為C,求過這三個點的外接圓的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AD⊥BC,垂足為點D,EF⊥BC,垂足為點F,∠1+∠2=180°.請?zhí)顚憽?/span>CGD=∠CAB的理由.
解:因為AD⊥BC,EF⊥BC(______ )
所以∠ADC=90°,∠EFD=90°(______ )
得∠ADC=∠EFD(等量代換),
所以AD∥EF(______ )
得∠2+∠3=180°(______。
由∠1+∠2=180°(______ )
得∠1=∠3(______。
所以DG∥AB(______ )
所以∠CGD=∠CAB(______。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:E是∠AOB的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點F.
(1)求證:OE是CD的垂直平分線.
(2)若∠AOB=60,請你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com